-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain_citeseer.py
138 lines (119 loc) · 4.58 KB
/
train_citeseer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# This code is copyied and modified from PyGCN the official GitHub of GCN
# https://github.com/tkipf/pygcn
from __future__ import division
from __future__ import print_function
import time
import argparse
import os
import torch
import torch.nn.functional as F
import torch.optim as optim
from utils_pygcn import accuracy, sparse_mx_to_torch_sparse_tensor
from utils import load_data
from models import AKGNN
import numpy as np
# Training settings
parser = argparse.ArgumentParser()
parser.add_argument('--no-cuda', action='store_true', default=False,
help='Disables CUDA training.')
parser.add_argument('--fastmode', action='store_true', default=False,
help='Validate during training pass.')
parser.add_argument('--seed', type=int, default=31, help='Random seed.')
parser.add_argument('--epochs', type=int, default=10000,
help='Number of epochs to train.')
parser.add_argument('--lr', type=float, default=0.05,
help='Initial learning rate.')
parser.add_argument('--weight_decay', type=float, default=5e-4,
help='Weight decay (L2 loss on parameters).')
parser.add_argument('--hidden', type=int, default=64,
help='Number of hidden units.')
parser.add_argument('--dropout', type=float, default=0.6,
help='Dropout rate (1 - keep probability).')
parser.add_argument('--device', type=int, default=0,
help='which GPU to run')
parser.add_argument('--early_patience', type=int, default=100)
parser.add_argument('--layers', type=int, default=5)
args = parser.parse_args()
args.cuda = True #not args.no_cuda and torch.cuda.is_available()
torch.cuda.set_device(args.device)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
# Load data pygcn version
adj, features, labels, idx_train, idx_val, idx_test = load_data('citeseer', args.seed, 20)
# Model and optimizer
model = AKGNN(
n_layer = args.layers,
in_dim=features.shape[1],
h_dim=args.hidden,
n_class=labels.max().item() + 1,
activation = F.leaky_relu,
dropout=args.dropout
)
optimizer = optim.Adam(model.parameters(),
lr=args.lr, weight_decay=args.weight_decay)
if args.cuda:
model.cuda()
features = features.cuda()
adj = adj.cuda()
labels = labels.cuda()
idx_train = idx_train.cuda()
idx_val = idx_val.cuda()
idx_test = idx_test.cuda()
def train(epoch):
t = time.time()
model.train()
optimizer.zero_grad()
output = model(features, adj)
loss_train = F.nll_loss(output[idx_train], labels[idx_train])
acc_train = accuracy(output[idx_train], labels[idx_train])
loss_train.backward()
optimizer.step()
if not args.fastmode:
# Evaluate validation set performance separately,
# deactivates dropout during validation run.
model.eval()
output = model(features, adj)
loss_val = F.nll_loss(output[idx_val], labels[idx_val])
acc_val = accuracy(output[idx_val], labels[idx_val])
print('Epoch: {:04d}'.format(epoch+1),
'loss_train: {:.4f}'.format(loss_train.item()),
'acc_train: {:.4f}'.format(acc_train.item()),
'loss_val: {:.4f}'.format(loss_val.item()),
'acc_val: {:.4f}'.format(acc_val.item()),
'time: {:.4f}s'.format(time.time() - t))
return loss_val
def test():
model.eval()
output = model(features, adj)
loss_test = F.nll_loss(output[idx_test], labels[idx_test])
acc_test = accuracy(output[idx_test], labels[idx_test])
print("Test set results under current model:",
"loss= {:.4f}".format(loss_test.item()),
"accuracy= {:.4f}".format(acc_test.item()))
return acc_test
# initialize placeholders for early stopping
best_val = torch.tensor(100.)
best = None
best_epoch = 0
best_test = 0
# Train model
t_total = time.time()
for epoch in range(args.epochs):
if epoch - best_epoch >= args.early_patience:
break
loss_val = train(epoch)
if loss_val < best_val:
best_epoch = epoch
try:
print(epoch, 'A BETTER VALIDATION FOUND:', best_val.detach().cpu().numpy(), '->', loss_val.detach().cpu().numpy())
best_test = test()
best = [float(layer.get_actual_lambda().detach().cpu().numpy()) for layer in model.layers]
except:
continue
best_val = loss_val
print('Test ACC:', float(best_test.detach().cpu().numpy()))
print('lambda max at each layer:')
print(best)
print("Optimization Finished!")
print("Total time elapsed: {:.4f}s".format(time.time() - t_total))