Skip to content

Latest commit

 

History

History
62 lines (44 loc) · 2.89 KB

README.md

File metadata and controls

62 lines (44 loc) · 2.89 KB

Interpreting Latent Spaces of Generative Models for Medical Images using Unsupervised Methods

Authors implementation of Interpreting Latent Spaces of Generative Models for Medical Images Using Unsupervised Methods (DGM4MICCAI 2022)

  • Data: LIDC [1]
  • Implementation of a DCGAN and a Res-Net based CNN-VAE
  • Model agnostic unsupervised exploration of the latent space of a generative model [2]

How To Run

Results

  • We see non-trivial image transformations on medical images.
  • Many such directions are provided in Animations
  • Some examples are the following:

An image

VAE - z-Position

An image

VAE - y-Position

An image

DCGAN - Breast Size

An image

DCGAN - Rotation

An image

DCGAN - Thickness

Citation

@InProceedings{schon22interpreting,
author="Sch{\"o}n, Julian
and Selvan, Raghavendra
and Petersen, Jens",
title="Interpreting Latent Spaces of Generative Models for Medical Images Using Unsupervised Methods",
booktitle="Deep Generative Models",
year="2022",
publisher="Springer Nature Switzerland",
pages="24--33",
isbn="978-3-031-18576-2"
}

Credits

The VAE implementation is based on https://github.com/LukeDitria/CNN-VAE
The Latent Direction Discovery is based on https://github.com/anvoynov/GANLatentDiscovery

[1] Armato III, S. G., McLennan, G., Bidaut, L., McNitt-Gray, M. F., Meyer, C. R., Reeves, A. P., Zhao, B., Aberle, D. R., Henschke, C. I., Hoffman, E. A., Kazerooni, E. A., MacMahon, H., Van Beek, E. J. R., Yankelevitz, D., Biancardi, A. M., Bland, P. H., Brown, M. S., Engelmann, R. M., Laderach, G. E., Max, D., Pais, R. C. , Qing, D. P. Y. , Roberts, R. Y., Smith, A. R., Starkey, A., Batra, P., Caligiuri, P., Farooqi, A., Gladish, G. W., Jude, C. M., Munden, R. F., Petkovska, I., Quint, L. E., Schwartz, L. H., Sundaram, B., Dodd, L. E., Fenimore, C., Gur, D., Petrick, N., Freymann, J., Kirby, J., Hughes, B., Casteele, A. V., Gupte, S., Sallam, M., Heath, M. D., Kuhn, M. H., Dharaiya, E., Burns, R., Fryd, D. S., Salganicoff, M., Anand, V., Shreter, U., Vastagh, S., Croft, B. Y., Clarke, L. P. (2015). Data From LIDC-IDRI [Data set]. The Cancer Imaging Archive. (https://doi.org/10.7937/K9/TCIA.2015.LO9QL9SX)

[2] Voynov, A., & Babenko, A. (2020, November). Unsupervised discovery of interpretable directions in the gan latent space. In International Conference on Machine Learning (pp. 9786-9796). PMLR.