-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathk_fold.py
59 lines (47 loc) · 1.81 KB
/
k_fold.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
#!/usr/bin/python
#-*- coding:utf-8 -*-
import random
import operator
from data_manager import *
"""
Do the separation into k-folds
"""
__author__ = 'Juliana Medeiros de Lucena (jml) and Tiago Ferreira Lima (tfl2)'
def k_fold(path, k):
folds = [open('sub_training_%i' % i, 'w') for i in range(0, k) ]
insts = open(path).readlines()
while len(insts) != 0:
for fold in folds:
if len(insts) != 0:
fold.write(insts.pop(random.randint(0, len(insts) - 1)))
else:
break
def stratified_k_fold(path, k):
insts = get_data(path)
folds = [dict.fromkeys(insts.keys()) for i in range(0, k)]
# Initializing because fromkeys() uses the reference
for fold in folds:
for klass in fold.keys():
fold[klass] = []
qtt_per_klass = map(len, [insts[klass] for klass in insts.keys()])
qtt_per_fold = map(operator.idiv, qtt_per_klass, [k] * len(qtt_per_klass))
qtt_leftover = map(operator.mod, qtt_per_klass, [k] * len(qtt_per_klass))
# Distributing instances to folds
klass_qtt_per_fold = dict(zip(insts.keys(), qtt_per_fold))
for fold in folds:
for (k, q) in klass_qtt_per_fold.items():
for i in range(0, q):
fold[k].append(insts[k].pop(random.randint(0, len(insts[k]) - 1)))
# Distributing leftover instances to folds (inexact division)
klass_qtt_leftover = dict(zip(insts.keys(), qtt_leftover))
for (k, q) in klass_qtt_leftover.items():
for i in range(0, q):
f = sorted(folds, key=lambda fold: len(fold[k]))[0]
f[k].append(insts[k].pop(random.randint(0, len(insts[k]) - 1)))
# Printing just to be sure that all instances were used
print insts
for fold in folds:
push_data(fold, 'sub_training_%i' % folds.index(fold))
if __name__ == '__main__':
#k_fold('datasets/liver/bupa.data', 5)
stratified_k_fold('datasets/ionosphere/ionosphere.data', 5)