-
Notifications
You must be signed in to change notification settings - Fork 149
/
grisu3.c
443 lines (404 loc) · 13 KB
/
grisu3.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
/* This file is part of an implementation of the "grisu3" double to string
conversion algorithm described in the research paper
"Printing Floating-Point Numbers Quickly And Accurately with Integers"
by Florian Loitsch, available at
http://www.cs.tufts.edu/~nr/cs257/archive/florian-loitsch/printf.pdf */
#include <stdint.h> // uint64_t etc.
#include <assert.h> // assert
#include <math.h> // ceil
#include <stdio.h> // sprintf
#include <stddef.h> // ptrdiff_t
#include <limits.h> // INT_MIN
#include <string.h> // strcpy
#include "grisu3.h"
#ifdef _MSC_VER
#pragma warning(disable : 4204) // nonstandard extension used : non-constant aggregate initializer
#endif
#define D64_SIGN 0x8000000000000000ULL
#define D64_EXP_MASK 0x7FF0000000000000ULL
#define D64_FRACT_MASK 0x000FFFFFFFFFFFFFULL
#define D64_IMPLICIT_ONE 0x0010000000000000ULL
#define D64_EXP_POS 52
#define D64_EXP_BIAS 1075
#define DIYFP_FRACT_SIZE 64
#define D_1_LOG2_10 0.30102999566398114 // 1 / lg(10)
#define MIN_TARGET_EXP -60
#define MASK32 0xFFFFFFFFULL
#define CAST_U64(d) (*(uint64_t*)&d)
#define MIN(x,y) ((x) <= (y) ? (x) : (y))
#define MAX(x,y) ((x) >= (y) ? (x) : (y))
#define MIN_CACHED_EXP -348
#define CACHED_EXP_STEP 8
typedef struct diy_fp
{
uint64_t f;
int e;
} diy_fp;
typedef struct power
{
uint64_t fract;
int16_t b_exp, d_exp;
} power;
static const power pow_cache[] =
{
{ 0xfa8fd5a0081c0288ULL, -1220, -348 },
{ 0xbaaee17fa23ebf76ULL, -1193, -340 },
{ 0x8b16fb203055ac76ULL, -1166, -332 },
{ 0xcf42894a5dce35eaULL, -1140, -324 },
{ 0x9a6bb0aa55653b2dULL, -1113, -316 },
{ 0xe61acf033d1a45dfULL, -1087, -308 },
{ 0xab70fe17c79ac6caULL, -1060, -300 },
{ 0xff77b1fcbebcdc4fULL, -1034, -292 },
{ 0xbe5691ef416bd60cULL, -1007, -284 },
{ 0x8dd01fad907ffc3cULL, -980, -276 },
{ 0xd3515c2831559a83ULL, -954, -268 },
{ 0x9d71ac8fada6c9b5ULL, -927, -260 },
{ 0xea9c227723ee8bcbULL, -901, -252 },
{ 0xaecc49914078536dULL, -874, -244 },
{ 0x823c12795db6ce57ULL, -847, -236 },
{ 0xc21094364dfb5637ULL, -821, -228 },
{ 0x9096ea6f3848984fULL, -794, -220 },
{ 0xd77485cb25823ac7ULL, -768, -212 },
{ 0xa086cfcd97bf97f4ULL, -741, -204 },
{ 0xef340a98172aace5ULL, -715, -196 },
{ 0xb23867fb2a35b28eULL, -688, -188 },
{ 0x84c8d4dfd2c63f3bULL, -661, -180 },
{ 0xc5dd44271ad3cdbaULL, -635, -172 },
{ 0x936b9fcebb25c996ULL, -608, -164 },
{ 0xdbac6c247d62a584ULL, -582, -156 },
{ 0xa3ab66580d5fdaf6ULL, -555, -148 },
{ 0xf3e2f893dec3f126ULL, -529, -140 },
{ 0xb5b5ada8aaff80b8ULL, -502, -132 },
{ 0x87625f056c7c4a8bULL, -475, -124 },
{ 0xc9bcff6034c13053ULL, -449, -116 },
{ 0x964e858c91ba2655ULL, -422, -108 },
{ 0xdff9772470297ebdULL, -396, -100 },
{ 0xa6dfbd9fb8e5b88fULL, -369, -92 },
{ 0xf8a95fcf88747d94ULL, -343, -84 },
{ 0xb94470938fa89bcfULL, -316, -76 },
{ 0x8a08f0f8bf0f156bULL, -289, -68 },
{ 0xcdb02555653131b6ULL, -263, -60 },
{ 0x993fe2c6d07b7facULL, -236, -52 },
{ 0xe45c10c42a2b3b06ULL, -210, -44 },
{ 0xaa242499697392d3ULL, -183, -36 },
{ 0xfd87b5f28300ca0eULL, -157, -28 },
{ 0xbce5086492111aebULL, -130, -20 },
{ 0x8cbccc096f5088ccULL, -103, -12 },
{ 0xd1b71758e219652cULL, -77, -4 },
{ 0x9c40000000000000ULL, -50, 4 },
{ 0xe8d4a51000000000ULL, -24, 12 },
{ 0xad78ebc5ac620000ULL, 3, 20 },
{ 0x813f3978f8940984ULL, 30, 28 },
{ 0xc097ce7bc90715b3ULL, 56, 36 },
{ 0x8f7e32ce7bea5c70ULL, 83, 44 },
{ 0xd5d238a4abe98068ULL, 109, 52 },
{ 0x9f4f2726179a2245ULL, 136, 60 },
{ 0xed63a231d4c4fb27ULL, 162, 68 },
{ 0xb0de65388cc8ada8ULL, 189, 76 },
{ 0x83c7088e1aab65dbULL, 216, 84 },
{ 0xc45d1df942711d9aULL, 242, 92 },
{ 0x924d692ca61be758ULL, 269, 100 },
{ 0xda01ee641a708deaULL, 295, 108 },
{ 0xa26da3999aef774aULL, 322, 116 },
{ 0xf209787bb47d6b85ULL, 348, 124 },
{ 0xb454e4a179dd1877ULL, 375, 132 },
{ 0x865b86925b9bc5c2ULL, 402, 140 },
{ 0xc83553c5c8965d3dULL, 428, 148 },
{ 0x952ab45cfa97a0b3ULL, 455, 156 },
{ 0xde469fbd99a05fe3ULL, 481, 164 },
{ 0xa59bc234db398c25ULL, 508, 172 },
{ 0xf6c69a72a3989f5cULL, 534, 180 },
{ 0xb7dcbf5354e9beceULL, 561, 188 },
{ 0x88fcf317f22241e2ULL, 588, 196 },
{ 0xcc20ce9bd35c78a5ULL, 614, 204 },
{ 0x98165af37b2153dfULL, 641, 212 },
{ 0xe2a0b5dc971f303aULL, 667, 220 },
{ 0xa8d9d1535ce3b396ULL, 694, 228 },
{ 0xfb9b7cd9a4a7443cULL, 720, 236 },
{ 0xbb764c4ca7a44410ULL, 747, 244 },
{ 0x8bab8eefb6409c1aULL, 774, 252 },
{ 0xd01fef10a657842cULL, 800, 260 },
{ 0x9b10a4e5e9913129ULL, 827, 268 },
{ 0xe7109bfba19c0c9dULL, 853, 276 },
{ 0xac2820d9623bf429ULL, 880, 284 },
{ 0x80444b5e7aa7cf85ULL, 907, 292 },
{ 0xbf21e44003acdd2dULL, 933, 300 },
{ 0x8e679c2f5e44ff8fULL, 960, 308 },
{ 0xd433179d9c8cb841ULL, 986, 316 },
{ 0x9e19db92b4e31ba9ULL, 1013, 324 },
{ 0xeb96bf6ebadf77d9ULL, 1039, 332 },
{ 0xaf87023b9bf0ee6bULL, 1066, 340 }
};
static int cached_pow(int exp, diy_fp *p)
{
int k = (int)ceil((exp+DIYFP_FRACT_SIZE-1) * D_1_LOG2_10);
int i = (k-MIN_CACHED_EXP-1) / CACHED_EXP_STEP + 1;
p->f = pow_cache[i].fract;
p->e = pow_cache[i].b_exp;
return pow_cache[i].d_exp;
}
static diy_fp minus(diy_fp x, diy_fp y)
{
diy_fp d; d.f = x.f - y.f; d.e = x.e;
assert(x.e == y.e && x.f >= y.f);
return d;
}
static diy_fp multiply(diy_fp x, diy_fp y)
{
uint64_t a, b, c, d, ac, bc, ad, bd, tmp;
diy_fp r;
a = x.f >> 32; b = x.f & MASK32;
c = y.f >> 32; d = y.f & MASK32;
ac = a*c; bc = b*c;
ad = a*d; bd = b*d;
tmp = (bd >> 32) + (ad & MASK32) + (bc & MASK32);
tmp += 1U << 31; // round
r.f = ac + (ad >> 32) + (bc >> 32) + (tmp >> 32);
r.e = x.e + y.e + 64;
return r;
}
static diy_fp normalize_diy_fp(diy_fp n)
{
assert(n.f != 0);
while(!(n.f & 0xFFC0000000000000ULL)) { n.f <<= 10; n.e -= 10; }
while(!(n.f & D64_SIGN)) { n.f <<= 1; --n.e; }
return n;
}
static diy_fp double2diy_fp(double d)
{
diy_fp fp;
uint64_t u64 = CAST_U64(d);
if (!(u64 & D64_EXP_MASK)) { fp.f = u64 & D64_FRACT_MASK; fp.e = 1 - D64_EXP_BIAS; }
else { fp.f = (u64 & D64_FRACT_MASK) + D64_IMPLICIT_ONE; fp.e = (int)((u64 & D64_EXP_MASK) >> D64_EXP_POS) - D64_EXP_BIAS; }
return fp;
}
// pow10_cache[i] = 10^(i-1)
static const unsigned int pow10_cache[] = { 0, 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000 };
static int largest_pow10(uint32_t n, int n_bits, uint32_t *power)
{
int guess = ((n_bits + 1) * 1233 >> 12) + 1/*skip first entry*/;
if (n < pow10_cache[guess]) --guess; // We don't have any guarantees that 2^n_bits <= n.
*power = pow10_cache[guess];
return guess;
}
static int round_weed(char *buffer, int len, uint64_t wp_W, uint64_t delta, uint64_t rest, uint64_t ten_kappa, uint64_t ulp)
{
uint64_t wp_Wup = wp_W - ulp;
uint64_t wp_Wdown = wp_W + ulp;
while(rest < wp_Wup && delta - rest >= ten_kappa
&& (rest + ten_kappa < wp_Wup || wp_Wup - rest >= rest + ten_kappa - wp_Wup))
{
--buffer[len-1];
rest += ten_kappa;
}
if (rest < wp_Wdown && delta - rest >= ten_kappa
&& (rest + ten_kappa < wp_Wdown || wp_Wdown - rest > rest + ten_kappa - wp_Wdown))
return 0;
return 2*ulp <= rest && rest <= delta - 4*ulp;
}
static int digit_gen(diy_fp low, diy_fp w, diy_fp high, char *buffer, int *length, int *kappa)
{
uint64_t unit = 1;
diy_fp too_low = { low.f - unit, low.e };
diy_fp too_high = { high.f + unit, high.e };
diy_fp unsafe_interval = minus(too_high, too_low);
diy_fp one = { 1ULL << -w.e, w.e };
uint32_t p1 = (uint32_t)(too_high.f >> -one.e);
uint64_t p2 = too_high.f & (one.f - 1);
uint32_t div;
*kappa = largest_pow10(p1, DIYFP_FRACT_SIZE + one.e, &div);
*length = 0;
while(*kappa > 0)
{
uint64_t rest;
int digit = p1 / div;
buffer[*length] = (char)('0' + digit);
++*length;
p1 %= div;
--*kappa;
rest = ((uint64_t)p1 << -one.e) + p2;
if (rest < unsafe_interval.f) return round_weed(buffer, *length, minus(too_high, w).f, unsafe_interval.f, rest, (uint64_t)div << -one.e, unit);
div /= 10;
}
for(;;)
{
int digit;
p2 *= 10;
unit *= 10;
unsafe_interval.f *= 10;
// Integer division by one.
digit = (int)(p2 >> -one.e);
buffer[*length] = (char)('0' + digit);
++*length;
p2 &= one.f - 1; // Modulo by one.
--*kappa;
if (p2 < unsafe_interval.f) return round_weed(buffer, *length, minus(too_high, w).f * unit, unsafe_interval.f, p2, one.f, unit);
}
}
static int grisu3(double v, char *buffer, int *length, int *d_exp)
{
int mk, kappa, success;
diy_fp dfp = double2diy_fp(v);
diy_fp w = normalize_diy_fp(dfp);
// normalize boundaries
diy_fp t = { (dfp.f << 1) + 1, dfp.e - 1 };
diy_fp b_plus = normalize_diy_fp(t);
diy_fp b_minus;
diy_fp c_mk; // Cached power of ten: 10^-k
uint64_t u64 = CAST_U64(v);
assert(v > 0 && v <= 1.7976931348623157e308); // Grisu only handles strictly positive finite numbers.
if (!(u64 & D64_FRACT_MASK) && (u64 & D64_EXP_MASK) != 0) { b_minus.f = (dfp.f << 2) - 1; b_minus.e = dfp.e - 2;} // lower boundary is closer?
else { b_minus.f = (dfp.f << 1) - 1; b_minus.e = dfp.e - 1; }
b_minus.f = b_minus.f << (b_minus.e - b_plus.e);
b_minus.e = b_plus.e;
mk = cached_pow(MIN_TARGET_EXP - DIYFP_FRACT_SIZE - w.e, &c_mk);
w = multiply(w, c_mk);
b_minus = multiply(b_minus, c_mk);
b_plus = multiply(b_plus, c_mk);
success = digit_gen(b_minus, w, b_plus, buffer, length, &kappa);
*d_exp = kappa - mk;
return success;
}
int u32_to_hex_string(uint32_t val, char *str)
{
assert(str);
char *s = str;
const char hex[] = "0123456789ABCDEF";
for(;;)
{
*s++ = hex[val & 0xF];
val >>= 4;
if (val == 0)
break;
}
*s = '\0';
// TODO: Can avoid reversing in this loop if using builtin_clz to detect the string width beforehand.
ptrdiff_t len = s - str;
for(int i = 0; i < len>>1; ++i)
{
char ch = str[i];
str[i] = str[len-1-i];
str[len-1-i] = ch;
}
return (int)(s - str);
}
int i32_to_hex_string(int i, char *str)
{
assert(str);
if (i < 0)
{
*str++ = '-';
if (i == INT_MIN)
{
strcpy(str, "80000000");
return 9; // == strlen("-80000000")
}
return u32_to_string((uint32_t)-i, str) + 1;
}
return u32_to_string((uint32_t)i, str);
}
int u32_to_string(uint32_t val, char *str)
{
assert(str);
char *s = str;
for(;;)
{
int ni = val / 10;
int digit = val - ni*10;
*s++ = (char)('0' + digit);
if (ni == 0)
break;
val = ni;
}
*s = '\0';
ptrdiff_t len = s - str;
for(int i = 0; i < len>>1; ++i)
{
char ch = str[i];
str[i] = str[len-1-i];
str[len-1-i] = ch;
}
return (int)(s - str);
}
int i32_to_string(int i, char *str)
{
assert(str);
if (i < 0)
{
*str++ = '-';
if (i == INT_MIN)
{
strcpy(str, "2147483648");
return 11; // == strlen("-2147483648")
}
return u32_to_string((uint32_t)-i, str) + 1;
}
return u32_to_string((uint32_t)i, str);
}
int dtoa_grisu3(double v, char *dst)
{
int d_exp, len, success, decimals, i;
uint64_t u64 = CAST_U64(v);
char *s2 = dst;
assert(dst);
// Prehandle NaNs
if ((u64 << 1) > 0xFFE0000000000000ULL)
{
#ifdef __EMSCRIPTEN__
*dst++ = 'N';
*dst++ = 'a';
*dst++ = 'N';
*dst = '\0';
return 3;
#else
return sprintf(dst, "NaN(%08X%08X)", (uint32_t)(u64 >> 32), (uint32_t)u64);
#endif
}
// Prehandle negative values.
if ((u64 & D64_SIGN) != 0) { *s2++ = '-'; v = -v; u64 ^= D64_SIGN; }
// Prehandle zero.
if (!u64) { *s2++ = '0'; *s2 = '\0'; return (int)(s2 - dst); }
// Prehandle infinity.
if (u64 == D64_EXP_MASK) { *s2++ = 'i'; *s2++ = 'n'; *s2++ = 'f'; *s2 = '\0'; return (int)(s2 - dst); }
success = grisu3(v, s2, &len, &d_exp);
// If grisu3 was not able to convert the number to a string, then use old sprintf (suboptimal).
if (!success)
{
#ifdef __EMSCRIPTEN__
return js_double_to_string(v, dst);
#else
return sprintf(s2, "%.17g", v) + (int)(s2 - dst);
#endif
}
// We now have an integer string of form "151324135" and a base-10 exponent for that number.
// Next, decide the best presentation for that string by whether to use a decimal point, or the scientific exponent notation 'e'.
// We don't pick the absolute shortest representation, but pick a balance between readability and shortness, e.g.
// 1.545056189557677e-308 could be represented in a shorter form
// 1545056189557677e-323 but that would be somewhat unreadable.
decimals = MIN(-d_exp, MAX(1, len-1));
if (d_exp < 0 && len > 1) // Add decimal point?
{
for(i = 0; i < decimals; ++i) s2[len-i] = s2[len-i-1];
s2[len++ - decimals] = '.';
d_exp += decimals;
// Need scientific notation as well?
if (d_exp != 0) { s2[len++] = 'e'; len += i32_to_string(d_exp, s2+len); }
}
else if (d_exp < 0 && d_exp >= -3) // Add decimal point for numbers of form 0.000x where it's shorter?
{
for(i = 0; i < len; ++i) s2[len-d_exp-1-i] = s2[len-i-1];
s2[0] = '.';
for(i = 1; i < -d_exp; ++i) s2[i] = '0';
len += -d_exp;
}
// Add scientific notation?
else if (d_exp < 0 || d_exp > 2) { s2[len++] = 'e'; len += i32_to_string(d_exp, s2+len); }
// Add zeroes instead of scientific notation?
else if (d_exp > 0) { while(d_exp-- > 0) s2[len++] = '0'; }
s2[len] = '\0'; // grisu3 doesn't null terminate, so ensure termination.
return (int)(s2+len-dst);
}
int f32_to_string(float v, char *dst)
{
return dtoa_grisu3((double)v, dst);
}