-
Notifications
You must be signed in to change notification settings - Fork 3
/
sed.cpp
439 lines (365 loc) · 16.7 KB
/
sed.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
#include "sed.h"
#include <math.h>
#include<iostream>
#include<fstream>
#include "tinyxml2/tinyxml2.h"
#include "tinyxml2_wrapper.h"
using namespace std;
sed::sed(RiverProfile *r, XMLElement *params_root)
{
initSedSeries(r->nnodes, params_root);
}
void sed::initSedSeries(unsigned int nodes, XMLElement *params_root)
{
double currentCoord = 0.;
double SerialDate;
GrateTime NewDate;
vector< TS_Object > tmp;
TS_Object NewEntry;
// get sed_series element from XML file
XMLElement *sed_series = params_root->FirstChildElement("sed_series");
if (sed_series == NULL) {
throw std::string("Error getting sed_series element from XML file");
}
// loop over all "STEP" elements in the XML file
for (XMLElement* e = sed_series->FirstChildElement("STEP"); e != NULL; e = e->NextSiblingElement("STEP")) {
SerialDate = getDoubleValue(e, "datetime");
NewDate.setExcelTime(SerialDate);
NewEntry.date_time = NewDate;
NewEntry.Q = getDoubleValue(e, "Qs");
NewEntry.Coord = getIntValue(e, "loc");
NewEntry.GRP = getIntValue(e, "GSD") - 1; // Input GSD is 1-based, adjust here to 0-based.
if (NewEntry.Coord > currentCoord) { // Have we moved to a new source coordinate?
Qs_series.push_back( tmp );
tmp.clear();
currentCoord = NewEntry.Coord;
tmp.push_back(NewEntry); // Start new tmp
}
else {
tmp.push_back(NewEntry);
}
}
Qs_series.push_back( tmp ); // Final tmp loaded into Qs_series array
Qs.resize(nodes); // Bedload transport (m3/s) at each node
deta.resize(nodes); // Rate of vertical bed change (d-eta) with time (dt)
dLa_over_dt.resize(nodes);
p.resize(nodes);
df.resize(nodes);
}
void sed::setNodalSedInputs(RiverProfile *r)
{
unsigned int j = 0;
unsigned int i = 0;
i = Qs_series[0][0].date_time.secsTo( r->cTime );
if ( Qs_series[0][0].date_time.secsTo( r->cTime ) < 1 ) // Start of run?
for ( i = 0; i < Qs_series.size(); i++ ) // Qs.size is the # of tribs/sources
Qs_bc.push_back( Qs_series[i][0] );
else
{
j = 0;
while( Qs_series[0][j].date_time.secsTo( r->cTime ) > 0 )
j++;
for ( i = 0; i < Qs_series.size(); i++ )
{
Qs_bc[i].Coord = Qs_series[i][j-1].Coord;
Qs_bc[i].GRP = Qs_series[i][j-1].GRP;
Qs_bc[i].date_time = Qs_series[i][j-1].date_time;
Qs_bc[i].Q = ( Qs_series[i][j-1].Q + ( Qs_series[i][j-1].date_time.secsTo(r->cTime) ) *
( Qs_series[i][j].Q - Qs_series[i][j-1].Q ) /
( Qs_series[i][j-1].date_time.secsTo(Qs_series[i][j].date_time) ));
//Qs_bc[i].Q *= r->qsTweak;
//Qs_bc[i].Q *= r->tweakArray[r->yearCounter]; // Flood = 0.8 to 1.8 mean flow
}
//Qs_bc[0].Q *= r->qwTweak; // Feed randomizer
}
}
NodeGSDObject sed::multiplyGSD(NodeGSDObject &M, NodeGSDObject &N, double weight, RiverProfile *r)
{
// this routine is used to multiply two grain size distributions together,
// with proportion 'weight' used as the weighting on 1st element, '1-weight' as the other.
// Primary use is for chi constant (0.7). '0.5' otherwise.
NodeGSDObject fi; // return GSD object
for ( unsigned int j = 0; j < r->ngsz; j++ )
{
for ( unsigned int k = 0; k < r->nlith; k++ )
{
fi.pct[k][j] = weight * M.pct[k][j] + ( 1.0 - weight ) * N.pct[k][j];
}
}
fi.norm_frac();
return(fi);
}
void sed::computeTransport(RiverProfile *r)
{
unsigned int bc;
unsigned int i, j, k;
unsigned int inode;
NodeGSDObject qtemp; // temporary, for storing grain size fractions
unsigned int ngsz, nlith;
double taussrg; // Wilcock - reference (median) shear
double b; // b exponent for each size fraction
double arg; // decision for G
double phisgo;
double dj; // grain size;
double ds50;
double specWt; // submerged specific weight of gravel
double a0;
double Wwc; // Wi* from Wilcock Crowe
double FGSum;
vector<double> ktot, ktotn;
ngsz = r->F[0].psi.size() - 2;
nlith = r->F[0].abrasion.size();
ktot.resize(ngsz);
ktotn.resize(ngsz);
specWt = 0.65; //(2650 - 1000) / 1000 - 1.;
setNodalSedInputs(r); // Calculate inputs at each tributary
for ( i = 0; i < r->nnodes; i++ ) // iterate nodes
{
for ( j = 0; j < r->ngsz; j++ ) // iterate grain size
for ( k = 0; k < r->nlith; k++ ) // iterate lithology
fpp.pct[k][j] = r->F[i].pct[k][j]; // temp bl is extracted from the surface layer
fpp.norm_frac(); // Normalize f fractions
fpp.dg_and_std();
if (r->eta[i] >= r->bedrock[i])
{
taussrg = 0.021 + 0.015 * exp( -20 * fpp.sand_pct );
phisgo = ( ( r->RiverXS[i].ustar * r->RiverXS[i].ustar ) / specWt / 9.81 / (pow( 2, fpp.dsg ) / 1000)) / taussrg;
FGSum = 1e-10;
Wwc = 0.;
for ( j = 0; j < ngsz; j++ )
{
ktot[j] = 0;
a0 = ( 0.5 * ( fpp.psi[j] + fpp.psi[j+1] ) );
ds50 = pow( 2.0, fpp.dsg ) / 1000;
dj = pow( 2.0, a0 ) / 1000;
b = 0.67 / (1 + exp( 1.5 - ( dj / ds50 ) ) ); // Wilcock eqn. (4)
arg = phisgo * pow( ( dj / ds50 ), -b );
if (arg < 1.35)
Wwc = 0.002 * pow( arg, 7.5 ); // eqn.7a
else
Wwc = 14 * pow( ( 1 - 0.894 / sqrt(arg) ), 4.5 ); //eqn. 7b
for ( k = 0; k < nlith; k++ )
{
fpp.pct[k][j] *= Wwc;
ktot[j] += fpp.pct[k][j];
}
FGSum += ktot[j];
}
// Normalize the bedload fractions
fpp.norm_frac();
if (FGSum > 0)
Qs[i] = FGSum * pow( r->RiverXS[i].ustar, 3 ) / specWt /
9.81 * ( r->RiverXS[i].width );
else
Qs[i] = 0.0;
}
else
Qs[i] = 0.0;
for ( j = 0; j < r->ngsz; j++ )
for ( k = 0; k < r->nlith; k++ )
p[i].pct[k][j] = fpp.pct[k][j]; // revise the bedload grain-size fractions
p[i].abrasion[0] = r->randAbr;
p[i].abrasion[1] = r->randAbr;
p[i].abrasion[2] = r->randAbr;
}
//Qs[r->nnodes - 1] = Qs[r->nnodes - 2]; // Equilibrium bottom node
Qs[0] = Qs_bc[0].Q;
// Adjust bedload for sed inflow - revise bedload for main channel and tributary sediment inflows
for ( bc = 0; bc < Qs_series.size(); bc++ )
{
inode = ceil( Qs_series[bc][0].Coord / r->dx); // Node where trib is entering
if ( inode > 0 )
inode = inode - 1; // Input node is 1-based, adjust here to 0-based.
for ( j = 0; j < r->ngsz; j++ )
{
for ( k = 0; k < r->nlith; k++ )
{
qtemp.pct[k][j] = p[inode].pct[k][j] * Qs[inode] + r->grp[Qs_bc[bc].GRP].pct[k][j] * Qs_bc[bc].Q;
}
}
qtemp.norm_frac();
if ( ( bc > 0 ) && ( bc < Qs_series.size() - 1) ) // i.e., not first and last nodes
{
Qs[inode] += Qs_bc[bc].Q * 0.75;
Qs[inode+1] += Qs_bc[bc].Q * 0.25; // Distribute trib material downstream
}
else
Qs[inode] += Qs_bc[bc].Q;
for ( j = 0; j < r->ngsz; j++ )
for ( k = 0; k < r->nlith; k++ )
p[inode].pct[k][j] = qtemp.pct[k][j];
} // trib_input // Add additional, storage load from major tributaries
exner(r);
}
void sed::exner(RiverProfile *r)
{
unsigned int i, j, k, m = 0;
double upw = r->sedUpw; // Upwinding constant
double chi = 0.7; // weighting for interfacial exchange
double dmy;
vector<double> fullValleyWidth( r->nnodes );
vector<double> tmp(3);
tmp[0] = 0;
tmp[1] = 0;
tmp[2] = 0;
NodeGSDObject fi, Fprime; // Temporary grain-size container
fullValleyWidth[0] = r->RiverXS[0].fpWidth;
for ( i = 1; i < (r->nnodes-1); i++ ) // Calculate deta
{
fullValleyWidth[i] = r->RiverXS[i].fpWidth + r->RiverXS[i].width;
if (i==1)
{
deta[i] = r->dt * ( ( Qs[i] - Qs[i+1] ) / ( r->xx[i+1] - r->xx[i] ) )
/ (1.0 - r->poro) / fullValleyWidth[i];
}
else
{
deta[i] = r->dt * ( upw * ( ( Qs[i-1] - Qs[i] ) / ( r->xx[i] - r->xx[i-1] ) )
+ ( 1 - upw ) * ( ( Qs[i] - Qs[i+1] ) / ( r->xx[i+1] - r->xx[i] ) ) )
/ (1.0 - r->poro) / fullValleyWidth[i];
}
}
deta[0] = ( ( Qs_bc[0].Q - Qs[1] ) / ( r->xx[1] - r->xx[0] ) );
for ( i = 0; i < r->nnodes-1; i++ ) // Upstream boundary - if floating, i = 0
r->eta[i] += deta[i];
r->eta[r->nnodes-1] += deta[r->nnodes-2]; // Downstream boundary - uncomment if floating
for ( i = 1; i < r->nnodes; i++ ) // Calculate grain size changes
{
if ( r->toplayer[i] <= 0.0 )
{
r->toplayer[i] += r->layer;
r->ntop[i] = r->ntop[i] - 1;
}
if ( deta[i] >= 0.0 ) // interface, aggradational case
fi = multiplyGSD(p[i], r->F[i], chi, r);
else // interface, degradational case
{
for ( j = 0; j < r->ngsz; j++ )
for ( k = 0; k < r->nlith; k++ )
fi.pct[k][j] = r->storedf[i][r->ntop[i]].pct[k][j]; // applied to all degrading nodes
if ( -deta[i] > r->toplayer[i] ) // degrade more than one layer
{
for ( j = 0; j < r->ngsz; j++ )
for ( k = 0; k < r->nlith; k++ )
fi.pct[k][j] *= r->toplayer[i]; // applied to all degrading nodes
fi.norm_frac();
dmy = -deta[i] - r->toplayer[i] - r->layer;
m = r->ntop[i] - 1;
while (dmy > 0.0)
{
if (m <= 0)
cout << "Erosion has reached the bottom of the lowest storage layer at node " << i;
for ( j = 0; j < r->ngsz; j++ )
for ( k = 0; k < r->nlith; k++ )
fi.pct[k][j] += r->layer * r->storedf[i][m].pct[k][j]; // applied to all degrading nodes
fi.norm_frac();
dmy = dmy - r->layer;
m = m - 1;
} // end while loop
if (m <= 0)
{
cout << "Erosion has reached the bottom of the lowest storage layer at node " << i;
break;
}
for ( j = 0; j < r->ngsz; j++ )
for ( k = 0; k < r->nlith; k++ )
fi.pct[k][j] += ( r->layer + dmy ) * r->storedf[i][m].pct[k][j];
fi.norm_frac();
} // end degrading more than 1 layer
} // end aggradational/degradational cases
// Estimate F'
for ( j = 0; j < r->ngsz; j++ )
for ( k = 0; k < r->nlith; k++ )
Fprime.pct[k][j] = r->F[i].pct[k][j] / sqrt( pow( 2, ( r->F[i].psi[j+1] - r->F[i].psi[j] ) / 2 ) );
Fprime.norm_frac();
Fprime.pct.push_back(tmp); // add a 'j+1' category (zeros), to satisfy 'df' equation below.
if ( i < ( r->nnodes-1 ) )
{
for ( j = 0; j < r->ngsz; j++ )
{
df[i].pct[0][j] = 0.0;
df[i].pct[1][j] = 0.0;
df[i].pct[2][j] = 0.0;
for ( k = 0; k < r->nlith; k++ )
df[i].pct[k][j] += -( r->dt / r->RiverXS[i].width ) *
( ( upw * ( Qs[i] * p[i].pct[k][j] - Qs[i-1] * p[i-1].pct[k][j] ) / ( r->xx[i] - r->xx[i-1] )
+ ( 1 - upw ) * ( Qs[i+1] * p[i+1].pct[k][j] - Qs[i] * p[i].pct[k][j] ) / (r->xx[i+1] - r->xx[i] ) )
- p[i].abrasion[k] * Qs[i] * ( p[i].pct[k][j] + Fprime.pct[k][j] )
+ p[i].abrasion[k] * Qs[i] * ( 1 / ( 3 * log(2) ) ) * ( (p[i].pct[k][j] + Fprime.pct[k][j] )
/ ( r->F[i].psi[j+1] - r->F[i].psi[j]) - ( p[i].pct[k][j+1] + Fprime.pct[k][j+1] ) / ( r->F[i].psi[j+2] - r->F[i].psi[j+1] ) ) )
/ ( 1.0 - r->poro ) - fi.pct[k][j] * deta[i] + ( fi.pct[k][j] - r->F[i].pct[k][j] ) * dLa_over_dt[i] * r->dt;
}
}
for ( j = 0; j < r->ngsz; j++ )
for ( k = 0; k < r->nlith; k++ )
df[r->nnodes-1].pct[k][j] = df[r->nnodes-2].pct[k][j];
} // end for loop
// New loop - update bed grain size distribution
for ( i = 2; i < r->nnodes; i++ )
{
for ( j = 0; j < r->ngsz; j++ )
for ( k = 0; k < r->nlith; k++ )
r->F[i].pct[k][j] += df[i].pct[k][j];
r->F[i].norm_frac();
}
// Update storage layers
for ( i = 2; i < r->nnodes; i++ )
{
if (deta[i] < 0.0)
{
dmy = -deta[i] - r->toplayer[i];
while (dmy >= 0.0)
{
dmy -= r->layer;
r->ntop[i]--;
if (r->ntop[i] <= 0.0) // Raise exception here; bedrock reached.
{
cout << "Bedrock reached at node " << i;
break;
}
}
r->toplayer[i] = -dmy;
} // end degradational case
else // begin aggradational case
{
if ((deta[i] + r->toplayer[i]) <= r->layer)
{
for ( j = 0; j < r->ngsz; j++ )
{
for ( k = 0; k < r->nlith; k++ )
{
r->storedf[i][r->ntop[i]].pct[k][j] = deta[i] * (chi * p[i].pct[k][j] + ( 1.0 - chi ) *
r->F[i].pct[k][j]) + r->toplayer[i] * r->storedf[i][r->ntop[i]].pct[k][j];
} // aggraded material is a mixture of p and f.
}
r->storedf[i][r->ntop[i]].norm_frac();
r->toplayer[i] += deta[i];
}
else
{ //aggrade more than current layer
for ( j = 0; j < r->ngsz; j++ )
for ( k = 0; k < r->nlith; k++ )
r->storedf[i][r->ntop[i]].pct[k][j] = ( r->layer - r->toplayer[i] ) * ( chi * p[i].pct[k][j] +
( 1.0 - chi ) * r->F[i].pct[k][j] ) + r->toplayer[i] * r->storedf[i][r->ntop[i]].pct[k][j];
// fill in additional stratigraphy w/ mixture of p and f.
r->storedf[i][r->ntop[i]].norm_frac();
dmy = deta[i] + r->toplayer[i] - r->layer;
while (dmy > 0.0)
{
r->ntop[i]++;
if (r->ntop[i] > (r->nlayer - 2)) //raise Exception: 'not enough storage layers for aggradation.'
{
cout << "Note enough storage layers for aggradation at node " << i;
break;
}
for ( j = 0; j < r->ngsz; j++ )
for ( k = 0; k < r->nlith; k++ )
r->storedf[i][r->ntop[i]].pct[k][j] = chi * p[i].pct[k][j] + (1.0 - chi) * r->F[i].pct[k][j];
r->storedf[i][r->ntop[i]].norm_frac();
dmy -= r->layer;
}
r->toplayer[i] = dmy + r->layer;
} //aggrade 1 or more layers;
} //aggradational case;
} //update storage layers
}