{-# OPTIONS --rewriting #-}
module lecture-notes-Subtyping where
open import Data.Unit using (⊤; tt)
open import Data.List using (List; []; _∷_)
open import Data.Vec
using (Vec; toList; []; _∷_; lookup)
open import Data.Fin using (Fin; 0F; suc; reduce≥)
open import Data.Vec.Membership.Propositional using (_∈_)
open import Data.Vec.Any using (Any; here; there)
open import Data.Nat using (ℕ; zero; suc; _<_; _+_; _≤_; s≤s; z≤n)
open import Data.Nat.Properties
using (≤-refl; ≤-pred; m+n≤o⇒m≤o; m+n≤o⇒n≤o; n≤0⇒n≡0; ≤-step)
open import Data.Bool using () renaming (Bool to 𝔹)
open import Data.Product using (_×_; Σ; Σ-syntax; ∃; ∃-syntax; proj₁; proj₂)
renaming (_,_ to ⟨_,_⟩)
open import Data.String using (String; _≟_)
open import Data.Empty using (⊥; ⊥-elim)
open import Data.Empty.Irrelevant renaming (⊥-elim to ⊥-elimi)
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; _≢_; refl; cong; sym; trans)
open import Relation.Nullary using (Dec; yes; no; ¬_)
open import Relation.Nullary.Negation using (contradiction)
import Syntax
We shall represent field identifiers (aka. names) as strings.
Id : Set
Id = String
The field identifiers of a record will be stored in a sequence,
specifically Agda's Vec
type. We define the following short-hand for
the lookup
function that retrieve's the ith element in the sequence.
infix 9 _❲_❳
_❲_❳ : ∀{n}{A : Set} → Vec A n → Fin n → A
xs ❲ i ❳ = lookup xs i
We require that the field names of a record be distinct, which we define as follows.
distinct : ∀{A : Set}{n} → Vec A n → Set
distinct [] = ⊤
distinct (x ∷ xs) = ¬ (x ∈ xs) × distinct xs
The following function implements decidable membership in a Vec
.
The Agda stdlib should have this, but I couldn't find it in a short
amount of time.
[It's in Data.Vec.Membership.DecPropositional.agda -Jeremy]
_∈?_ : ∀{n} (x : Id) → (xs : Vec Id n) → Dec (x ∈ xs)
x ∈? [] = no λ ()
x ∈? (y ∷ xs)
with x ≟ y
... | yes xy = yes (here xy)
... | no xy
with x ∈? xs
... | yes x∈xs = yes (there x∈xs)
... | no x∉xs = no λ { (here a) → xy a ; (there a) → x∉xs a }
The next function decides whether a vector is distinct.
distinct? : ∀{n} → (xs : Vec Id n) → Dec (distinct xs)
distinct? [] = yes tt
distinct? (x ∷ xs)
with x ∈? xs
... | yes x∈xs = no λ z → proj₁ z x∈xs
... | no x∉xs
with distinct? xs
... | yes dxs = yes ⟨ x∉xs , dxs ⟩
... | no ¬dxs = no λ x₁ → ¬dxs (proj₂ x₁)
This function turns an irrelevant proof that a vector is distinct into a relevant proof.
distinct-rel : ∀ {n}{fs : Vec Id n} .(d : distinct fs) → distinct fs
distinct-rel {n}{fs} d
with distinct? fs
... | yes dfs = dfs
... | no ¬dfs = ⊥-elimi (¬dfs d)
The result of lookup
is a member of the sequence.
lookup-mem : ∀{n}{fs : Vec Id n}{j : Fin n}
→ fs ❲ j ❳ ∈ fs
lookup-mem {.(suc _)} {x ∷ fs} {0F} = here refl
lookup-mem {.(suc _)} {x ∷ fs} {suc j} = there lookup-mem
For distinct vectors, indexing is injective.
distinct-lookup-eq : ∀ {n}{fs : Vec Id n}{i j : Fin n}
→ distinct fs
→ fs ❲ j ❳ ≡ fs ❲ i ❳
→ i ≡ j
distinct-lookup-eq {.(suc _)} {x ∷ fs} {0F} {0F} ⟨ x∉fs , dfs ⟩ lij = refl
distinct-lookup-eq {suc n} {x ∷ fs} {0F} {suc j} ⟨ x∉fs , dfs ⟩ refl =
⊥-elim (x∉fs lookup-mem)
distinct-lookup-eq {.(suc _)} {x ∷ fs} {suc i} {0F} ⟨ x∉fs , dfs ⟩ refl =
⊥-elim (x∉fs lookup-mem)
distinct-lookup-eq {suc n} {x ∷ fs} {suc i} {suc j} ⟨ x∉fs , dfs ⟩ lij =
let IH = distinct-lookup-eq {n} {fs}{i}{j} dfs lij in
cong suc IH
A vector of identifiers is a subset of another one if all the identifiers of the first vector are also in the second one.
data _⊆_ : ∀{n m} → Vec Id n → Vec Id m → Set where
subseteq : ∀ {n m} {xs : Vec Id n} {ys : Vec Id m}
→ ((i : Fin n) → Σ[ j ∈ Fin m ] xs ❲ i ❳ ≡ ys ❲ j ❳)
→ xs ⊆ ys
This subset relation is reflexive.
⊆-refl : ∀{n}{fs : Vec Id n} → fs ⊆ fs
⊆-refl {n}{fs} = subseteq (λ i → ⟨ i , refl ⟩)
The subset relation is also transitive.
⊆-trans : ∀{l n m}{ns : Vec Id n}{ms : Vec Id m}{ls : Vec Id l}
→ ns ⊆ ms → ms ⊆ ls
→ ns ⊆ ls
⊆-trans {l}{n}{m}{ns}{ms}{ls} (subseteq a) (subseteq b) = subseteq G
where
G : (i : Fin n) → Σ[ j ∈ Fin l ] ns ❲ i ❳ ≡ ls ❲ j ❳
G i
with a i
... | ⟨ j , lk1 ⟩
with b j
... | ⟨ k , lk2 ⟩
rewrite lk1 | lk2 = ⟨ k , refl ⟩
If one vector ns
is a subset of another ms
, then for any element
ns ❲ i ❳
, there is an equal element in ms
at some index.
lookup-⊆ : ∀{n m : ℕ}{ns : Vec Id n}{ms : Vec Id m}{i : Fin n}
→ ns ⊆ ms
→ Σ[ k ∈ Fin m ] ns ❲ i ❳ ≡ ms ❲ k ❳
lookup-⊆ {suc n} {m} {x ∷ ns} {ms} {i} (subseteq x₁) = x₁ i
infix 4 _⊢_⦂_
infixl 5 _,_
infixr 7 _⇒_
infix 6 _<:_
infix 5 λ:_⇒_
infixl 7 _·_
infixr 9 _#_
infix 4 _—→_
A record type is usually written
{ l₁ : A₁, l₂ : A₂, ..., lᵤ : Aᵤ }
so a natural representation would be a list of label-type pairs. However, we find it more convenient to represent record types as a pair of lists, one of labels and one of types:
l₁, l₂, ..., lᵤ
A₁, A₂, ..., Aᵤ
We represent these fixed-length lists using Agda's Vec
type.
data Type : Set where
`𝔹 : Type
`ℕ : Type
_⇒_ : Type → Type → Type
Record : (n : ℕ)(ls : Vec Id n)(As : Vec Type n) → .{d : distinct ls} → Type
In the above, we used distinct
on the field names of the record.
The following definition of subtyping closely follows the algorithmic subtyping rules in Chapter 16 of Types and Programming Languages (TAPL) by Benjamin Pierce.
data _<:_ : Type → Type → Set where
<:-bool : `𝔹 <: `𝔹
<:-nat : `ℕ <: `ℕ
<:-fun : ∀{A B C D}
→ C <: A → B <: D
----------------
→ A ⇒ B <: C ⇒ D
<:-rcd : ∀{m}{ks : Vec Id m}{Ss : Vec Type m}.{d1 : distinct ks}
{n}{ls : Vec Id n}{Ts : Vec Type n}.{d2 : distinct ls}
→ ls ⊆ ks
→ (∀{i : Fin n}{j : Fin m} → ks ❲ j ❳ ≡ ls ❲ i ❳
→ Ss ❲ j ❳ <: Ts ❲ i ❳)
------------------------------------------------------
→ Record m ks Ss {d1} <: Record n ls Ts {d2}
The first premise of the record subtyping rule (<:-rcd
) expresses
width subtyping by requiring that all the labels in ls
are also in
ks
. So it allows the hiding of fields when going from a subtype to a
supertype.
The second premise of the record subtyping rule (<:-rcd
) expresses
depth subtyping, that is, it allows the types of the fields to
change according to subtyping. The following is an abbreviation for
this premise.
_⦂_<:_⦂_ : ∀ {m n} → Vec Id m → Vec Type m → Vec Id n → Vec Type n → Set
_⦂_<:_⦂_ {m}{n} ks Ss ls Ts = (∀{i : Fin n}{j : Fin m}
→ ks ❲ j ❳ ≡ ls ❲ i ❳ → Ss ❲ j ❳ <: Ts ❲ i ❳)
The proof that subtyping is reflexive does not go by induction on the
type because of the <:-rcd
rule. We instead use induction on the
size of the type. So we first define size of a type, and the size of a
vector of types, as follows.
ty-size : (A : Type) → ℕ
vec-ty-size : ∀ {n : ℕ} → (As : Vec Type n) → ℕ
ty-size `𝔹 = 1
ty-size `ℕ = 1
ty-size (A ⇒ B) = suc (ty-size A + ty-size B)
ty-size (Record n fs As) = suc (vec-ty-size As)
vec-ty-size {n} [] = 0
vec-ty-size {n} (x ∷ xs) = ty-size x + vec-ty-size xs
The size of a type is always positive.
ty-size-pos : ∀ {A} → 0 < ty-size A
ty-size-pos {`𝔹} = s≤s z≤n
ty-size-pos {`ℕ} = s≤s z≤n
ty-size-pos {A ⇒ B} = s≤s z≤n
ty-size-pos {Record n fs As} = s≤s z≤n
If a vector of types is smaller than n
, then so is any type in the vector.
lookup-vec-ty-size : ∀{n}{k} {As : Vec Type k} {j}
→ vec-ty-size As ≤ n
→ ty-size (As ❲ j ❳) ≤ n
lookup-vec-ty-size {n} {suc k} {A ∷ As} {0F} As≤n =
m+n≤o⇒m≤o (ty-size A) As≤n
lookup-vec-ty-size {n} {suc k}{A ∷ As} {suc j} As≤n =
lookup-vec-ty-size {n} {k} {As} {j} (m+n≤o⇒n≤o (ty-size A) As≤n)
Here is the proof of reflexivity, by induction on the size of the type.
<:-refl-aux : ∀{n}{A}{m : ty-size A ≤ n} → A <: A
<:-refl-aux {0}{A}{m}
with ty-size-pos {A}
... | pos rewrite n≤0⇒n≡0 m
with pos
... | ()
<:-refl-aux {suc n}{`𝔹}{m} = <:-bool
<:-refl-aux {suc n}{`ℕ}{m} = <:-nat
<:-refl-aux {suc n}{A ⇒ B}{m} =
let a = ≤-pred m in
<:-fun (<:-refl-aux{n}{A}{m+n≤o⇒m≤o (ty-size A) a })
(<:-refl-aux{n}{B}{m+n≤o⇒n≤o (ty-size A) a})
<:-refl-aux {suc n}{Record k fs As {d}}{m} = <:-rcd {d1 = d}{d2 = d} ⊆-refl G
where
G : ∀ {i j : Fin k} →
fs ❲ j ❳ ≡ fs ❲ i ❳ → As ❲ j ❳ <: As ❲ i ❳
G {i}{j} lij rewrite distinct-lookup-eq (distinct-rel d) lij =
let Asⱼ≤n = lookup-vec-ty-size {n}{k}{As}{j} (≤-pred m) in
<:-refl-aux {n}{lookup As j}{Asⱼ≤n}
This corollary packages up reflexivity for ease of use.
<:-refl : ∀{A} → A <: A
<:-refl {A} = <:-refl-aux {ty-size A}{A}{≤-refl}
The proof of transitivity is straightforward, given that we've
already proved the two lemmas needed in the case for <:-rcd
:
⊆-trans
and lookup-⊆
.
<:-trans : ∀{A B C}
→ A <: B → B <: C
-------------------
→ A <: C
<:-trans {.`𝔹} {`𝔹} {.`𝔹} <:-bool <:-bool = <:-bool
<:-trans {.`ℕ} {`ℕ} {.`ℕ} <:-nat <:-nat = <:-nat
<:-trans {A₁ ⇒ A₂} {B₁ ⇒ B₂} {C₁ ⇒ C₂} (<:-fun A<:B A<:B₁) (<:-fun B<:C B<:C₁) =
<:-fun (<:-trans B<:C A<:B) (<:-trans A<:B₁ B<:C₁)
<:-trans {Record l ls As {d1} } {Record m ms Bs {d2} } {Record n ns Cs {d3} }
(<:-rcd ms⊆ls As<:Bs) (<:-rcd ns⊆ms Bs<:Cs) =
<:-rcd (⊆-trans ns⊆ms ms⊆ls) G
where
G : {i : Fin n} {j : Fin l} →
lookup ls j ≡ lookup ns i → lookup As j <: lookup Cs i
G {i}{j} lij
with lookup-⊆ {i = i} ns⊆ms
... | ⟨ k , lik ⟩
with lookup-⊆ {i = k} ms⊆ls
... | ⟨ j' , lkj' ⟩ rewrite sym lkj' | lij | sym lik =
let ab = As<:Bs {k}{j} (trans lij lik) in
let bc = Bs<:Cs {i}{k} (sym lik) in
<:-trans ab bc
We use Agda values as primitive constants. We include natural numbers, Booleans, and Agda functions over naturals and Booleans.
The Base
and Prim
data types describe the types of constants.
data Base : Set where
B-Nat : Base
B-Bool : Base
data Prim : Set where
base : Base → Prim
_⇒_ : Base → Prim → Prim
The base-rep
and rep
functions map from the type descriptors to
the Agda types that we will use to represent the constants.
base-rep : Base → Set
base-rep B-Nat = ℕ
base-rep B-Bool = 𝔹
rep : Prim → Set
rep (base b) = base-rep b
rep (b ⇒ p) = base-rep b → rep p
typeof-base : Base → Type
typeof-base B-Nat = `ℕ
typeof-base B-Bool = `𝔹
typeof : Prim → Type
typeof (base b) = typeof-base b
typeof (b ⇒ p) = typeof-base b ⇒ typeof p
Because we use algorithmic subtyping rules, the traditional inversion
lemmas for subtyping become trivial and therefore not necessary. One
can instead simply pattern match on the subtyping derivation. However,
the following inversion lemma is still useful because it hides the two
cases on the base b
.
inversion-<:-base : ∀ {b A}
→ A <: typeof-base b
→ A ≡ typeof-base b
inversion-<:-base {B-Nat} <:-nat = refl
inversion-<:-base {B-Bool} <:-bool = refl
We use the abstract-binding-trees library to represent terms.
A record term is usually written
{ l₁ = M₁, ..., lᵤ = Mᵤ }
We represent a record term as follows, with the list of labels as part of the operator.
(op-rcd u (l₁, ..., lᵤ)) ⦅ cons (ast M₁) ... (cons (ast Mᵤ) nil) ⦆
Field access is usually written
M.f
We instead use the notation
M # f
because the period is a reserved symbol in Agda.
data Op : Set where
op-lam : Type → Op
op-app : Op
op-rec : Op
op-const : (p : Prim) → rep p → Op
op-let : Op
op-rcd : (n : ℕ) → Vec Id n → Op
op-member : Id → Op
repeat : ℕ → ℕ → List ℕ
repeat x 0 = []
repeat x (suc n) = x ∷ repeat x n
sig : Op → List ℕ
sig (op-lam A) = 1 ∷ []
sig op-app = 0 ∷ 0 ∷ []
sig op-rec = 1 ∷ []
sig (op-const p k) = []
sig op-let = 0 ∷ 1 ∷ []
sig (op-rcd n fs) = repeat 0 n
sig (op-member f) = 0 ∷ []
open Syntax using (Rename; _•_; ↑; id; ext; ⦉_⦊)
open Syntax.OpSig Op sig
using (`_; _⦅_⦆; cons; nil; bind; ast; _[_]; Subst; ⟪_⟫; ⟦_⟧; ⟪_⟫₊;
exts; _⨟_; exts-suc-rename; rename; ren-args; Args; Arg)
renaming (ABT to Term)
pattern $ p k = (op-const p k) ⦅ nil ⦆
pattern λ:_⇒_ A N = (op-lam A) ⦅ cons (bind (ast N)) nil ⦆
pattern μ N = op-rec ⦅ cons (bind (ast N)) nil ⦆
pattern _·_ L M = op-app ⦅ cons (ast L) (cons (ast M) nil) ⦆
pattern `let L M = op-let ⦅ cons (ast L) (cons (bind (ast M)) nil) ⦆
pattern _#_ M f = (op-member f) ⦅ cons (ast M) nil ⦆
The Ms 〘 i 〙
notation returns the ith term from a sequence of
arguments.
_〘_〙 : {n : ℕ} → Args (repeat 0 n) → (i : Fin n) → Term
_〘_〙 {suc n} (cons (ast M) Ms) 0F = M
_〘_〙 {suc n} (cons (ast M) Ms) (suc i) = Ms 〘 i 〙
data Context : Set where
∅ : Context
_,_ : Context → Type → Context
infix 4 _∋_⦂_
data _∋_⦂_ : Context → ℕ → Type → Set where
Z : ∀ {Γ A}
------------------
→ Γ , A ∋ 0 ⦂ A
S : ∀ {Γ x A B}
→ Γ ∋ x ⦂ A
------------------
→ Γ , B ∋ (suc x) ⦂ A
The typing rules for records closely follow the rules (T-Rcd and T-Proj) in Chapter 11 of TAPL.
data _⊢*_⦂_ : Context → ∀ {n} → Args (repeat 0 n) → Vec Type n → Set
data _⊢_⦂_ : Context → Term → Type → Set where
-- Axiom
⊢` : ∀ {Γ x A}
→ Γ ∋ x ⦂ A
-----------
→ Γ ⊢ ` x ⦂ A
-- ⇒-I
⊢λ : ∀ {Γ N A B}
→ Γ , A ⊢ N ⦂ B
-------------------
→ Γ ⊢ λ: A ⇒ N ⦂ A ⇒ B
-- ⇒-E
⊢· : ∀ {Γ L M A B}
→ Γ ⊢ L ⦂ A ⇒ B
→ Γ ⊢ M ⦂ A
-------------
→ Γ ⊢ L · M ⦂ B
⊢μ : ∀ {Γ M A}
→ Γ , A ⊢ M ⦂ A
-----------------
→ Γ ⊢ μ M ⦂ A
⊢$ : ∀{Γ p k A}
→ A ≡ typeof p
-------------
→ Γ ⊢ $ p k ⦂ A
⊢let : ∀{Γ A B M N}
→ Γ ⊢ M ⦂ A
→ Γ , A ⊢ N ⦂ B
-----------------
→ Γ ⊢ `let M N ⦂ B
⊢rcd : ∀{Γ n}{Ms : Args (repeat 0 n) }{As : Vec Type n}{fs : Vec Id n}
→ Γ ⊢* Ms ⦂ As
→ (d : distinct fs)
→ Γ ⊢ (op-rcd n fs) ⦅ Ms ⦆ ⦂ Record n fs As {d}
⊢# : ∀{Γ A M n fs As d i f}
→ Γ ⊢ M ⦂ Record n fs As {d}
→ fs ❲ i ❳ ≡ f
→ As ❲ i ❳ ≡ A
-------------
→ Γ ⊢ M # f ⦂ A
⊢<: : ∀{Γ M A B}
→ Γ ⊢ M ⦂ A → A <: B
--------------------
→ Γ ⊢ M ⦂ B
data _⊢*_⦂_ where
⊢*nil : ∀{Γ} → Γ ⊢* nil ⦂ []
⊢*cons : ∀ {n}{Γ M}{Ms : Args (repeat 0 n)}{A}{As : Vec Type n}
→ Γ ⊢ M ⦂ A
→ Γ ⊢* Ms ⦂ As
→ Γ ⊢* (cons (ast M) Ms) ⦂ (A ∷ As)
data Value : Term → Set where
V-λ : ∀ {A} {N : Term}
---------------------------
→ Value (λ: A ⇒ N)
V-const : ∀ {p k}
-----------------
→ Value ($ p k)
V-rcd : ∀{n}{fs}{Ms}
{- cheating a bit here -}
→ Value ((op-rcd n fs) ⦅ Ms ⦆ )
data Frame : Set where
□·_ : Term → Frame
_·□ : (M : Term) → (v : Value M) → Frame
rcd□ : ∀ {n : ℕ} (i : Fin n) → Vec Id n → Args (repeat 0 n) → Frame
□#_ : Id → Frame
let□ : Term → Frame
The insert
function, used in the plug
function defined next,
replaces the ith argument in a sequence of arguments.
insert : ∀{n} → Term → (i : Fin n) → Args (repeat 0 n) → Args (repeat 0 n)
insert {suc n} M 0F (cons M' Ms) = cons (ast M) Ms
insert {suc n} M (suc i) (cons M' Ms) = cons M' (insert {n} M i Ms)
The plug
function fills a frame's hole with a term.
plug : Term → Frame → Term
plug L (□· M) = L · M
plug M ((L ·□) v) = L · M
plug M (rcd□ {n} i fs Ms) = (op-rcd n fs) ⦅ insert {n} M i Ms ⦆
plug M (□# f) = M # f
plug M (let□ N) = `let M N
In the following, just the β-# rule is new. It corresponds to the following reduction rule from Chapter 11 of TAPL.
{ lᵢ = vᵢ | i ∈ 1..n }.lⱼ —→ vⱼ
data _—→_ : Term → Term → Set where
ξ : ∀ {M M′}
→ (F : Frame)
→ M —→ M′
---------------------
→ plug M F —→ plug M′ F
β-λ : ∀ {A N V}
→ Value V
-------------------------
→ (λ: A ⇒ N) · V —→ N [ V ]
β-μ : ∀ {M}
----------------
→ μ M —→ M [ μ M ]
δ : ∀ {b p f k}
---------------------------------------------
→ ($ (b ⇒ p) f) · ($ (base b) k) —→ ($ p (f k))
β-let : ∀{V N}
→ Value V
-------------------
→ `let V N —→ N [ V ]
β-# : ∀ {n}{ls : Vec Id n}{vs : Args (repeat 0 n)} {lⱼ}{j : Fin n}
→ ls ❲ j ❳ ≡ lⱼ
-----------------------------------------
→ ((op-rcd n ls) ⦅ vs ⦆ ) # lⱼ —→ vs 〘 j 〙
data Function : Term → Type → Set where
Fun-λ : ∀ {A B C D}{N}
→ ∅ , A ⊢ N ⦂ B
→ A ⇒ B <: C ⇒ D
→ Function (λ: A ⇒ N) (C ⇒ D)
Fun-prim : ∀{b p k A B}
→ typeof (b ⇒ p) <: A ⇒ B
→ Function ($ (b ⇒ p) k) (A ⇒ B)
canonical-fun : ∀{V A B}
→ ∅ ⊢ V ⦂ A ⇒ B
→ Value V
------------------
→ Function V (A ⇒ B)
canonical-fun (⊢λ ⊢V) vV = Fun-λ ⊢V <:-refl
canonical-fun (⊢$ {p = base B-Nat} ()) vV
canonical-fun (⊢$ {p = base B-Bool} ()) vV
canonical-fun (⊢$ {p = b ⇒ p} refl) vV = Fun-prim <:-refl
canonical-fun (⊢<: ⊢V (<:-fun {C}{D}{A}{B} A<:C D<:B)) vV
with canonical-fun ⊢V vV
... | Fun-λ ⊢N lt = Fun-λ ⊢N (<:-trans lt (<:-fun A<:C D<:B))
... | Fun-prim lt = Fun-prim (<:-trans lt (<:-fun A<:C D<:B))
data Constant : Base → Term → Set where
base-const : ∀{b k} → Constant b ($ (base b) k)
canonical-base : ∀{b V}
→ ∅ ⊢ V ⦂ typeof-base b
→ Value V
------------
→ Constant b V
canonical-base {B-Nat} (⊢$ {.∅} {base B-Nat} x) vV = base-const
canonical-base {B-Nat} (⊢<: ⊢V <:-nat) vV = canonical-base ⊢V vV
canonical-base {B-Bool} (⊢$ {.∅} {base B-Bool} x) vV = base-const
canonical-base {B-Bool} (⊢<: ⊢V <:-bool) vV = canonical-base ⊢V vV
data Rcd : Term → Type → Set where
rcd : ∀{n}{fs : Vec Id n}{Ms : Args (repeat 0 n)}{As : Vec Type n}{d : distinct fs}
{k}{ks : Vec Id k}{Bs : Vec Type k}{d' : distinct ks}
→ ∅ ⊢* Ms ⦂ As
→ Record n fs As {d} <: Record k ks Bs {d'}
→ Rcd ((op-rcd n fs) ⦅ Ms ⦆) (Record k ks Bs {d'})
canonical-rcd : ∀{V n fs As d}
→ ∅ ⊢ V ⦂ Record n fs As {d}
→ Value V
→ Rcd V (Record n fs As {d})
canonical-rcd (⊢$ {p = base B-Nat} ()) vV
canonical-rcd (⊢$ {p = base B-Bool} ()) vV
canonical-rcd (⊢rcd ⊢Ms d) vV = rcd {d = d} {d' = d} ⊢Ms <:-refl
canonical-rcd {V} {n} {fs} {As} {d} (⊢<: ⊢V (<:-rcd {d1 = d1} fs⊆fs' lt)) vV
with canonical-rcd {d = distinct-rel d1} ⊢V vV
... | rcd {fs = fs''}{d = d''} ⊢Ms lt' =
rcd {d = d''}{d' = d} ⊢Ms (<:-trans lt' (<:-rcd fs⊆fs' lt))
data Progress (M : Term) : Set where
step : ∀ {N}
→ M —→ N
----------
→ Progress M
done :
Value M
----------
→ Progress M
progress : ∀ {M A}
→ ∅ ⊢ M ⦂ A
----------
→ Progress M
progress (⊢` ())
progress (⊢$ _) = done V-const
progress (⊢λ ⊢N) = done V-λ
progress (⊢· {L = L}{M}{A}{B} ⊢L ⊢M)
with progress ⊢L
... | step L—→L′ = step (ξ (□· M) L—→L′)
... | done VL
with progress ⊢M
... | step M—→M′ = step (ξ ((L ·□) VL) M—→M′)
... | done VM
with canonical-fun ⊢L VL
... | Fun-λ ⊢N lt = step (β-λ VM)
... | Fun-prim {b}{p}{k} (<:-fun A<:p b<:B)
rewrite inversion-<:-base A<:p
with canonical-base ⊢M VM
... | base-const = step δ
progress (⊢μ ⊢M) = step β-μ
progress (⊢let {N = N} ⊢L ⊢N)
with progress ⊢L
... | step L—→L′ = step (ξ (let□ N) L—→L′)
... | done VL = step (β-let VL)
progress (⊢# {n = n}{fs}{As}{d}{i}{f} ⊢R lif liA)
with progress ⊢R
... | step R—→R′ = step (ξ (□# f) R—→R′)
... | done VR
with canonical-rcd {d = d} ⊢R VR
... | rcd {n'}{fs'}{Ms} ⊢MS (<:-rcd fs⊆fs' lt)
with lookup-⊆ {i = i} fs⊆fs'
... | ⟨ k , eq ⟩ rewrite eq = step (β-# {j = k} lif)
progress (⊢rcd x d) = done V-rcd
progress (⊢<: {A = A}{B} ⊢M A<:B) = progress ⊢M
WTRename : Context → Rename → Context → Set
WTRename Γ ρ Δ = ∀ {x A} → Γ ∋ x ⦂ A → Δ ∋ ⦉ ρ ⦊ x ⦂ A
ext-pres : ∀ {Γ Δ ρ B}
→ WTRename Γ ρ Δ
--------------------------------
→ WTRename (Γ , B) (ext ρ) (Δ , B)
ext-pres {ρ = ρ } ⊢ρ Z = Z
ext-pres {ρ = ρ } ⊢ρ (S {x = x} ∋x) = S (⊢ρ ∋x)
ren-args-pres : ∀ {Γ Δ ρ}{n}{Ms : Args (repeat 0 n)}{As : Vec Type n}
→ WTRename Γ ρ Δ
→ Γ ⊢* Ms ⦂ As
---------------------
→ Δ ⊢* ren-args ρ Ms ⦂ As
rename-pres : ∀ {Γ Δ ρ M A}
→ WTRename Γ ρ Δ
→ Γ ⊢ M ⦂ A
------------------
→ Δ ⊢ rename ρ M ⦂ A
rename-pres ⊢ρ (⊢` ∋w) = ⊢` (⊢ρ ∋w)
rename-pres {ρ = ρ} ⊢ρ (⊢λ ⊢N) = ⊢λ (rename-pres {ρ = ext ρ} (ext-pres {ρ = ρ} ⊢ρ) ⊢N)
rename-pres {ρ = ρ} ⊢ρ (⊢· ⊢L ⊢M) = ⊢· (rename-pres {ρ = ρ} ⊢ρ ⊢L) (rename-pres {ρ = ρ} ⊢ρ ⊢M)
rename-pres {ρ = ρ} ⊢ρ (⊢μ ⊢M) = ⊢μ (rename-pres {ρ = ext ρ} (ext-pres {ρ = ρ} ⊢ρ) ⊢M)
rename-pres ⊢ρ (⊢$ eq) = ⊢$ eq
rename-pres {ρ = ρ} ⊢ρ (⊢let ⊢M ⊢N) =
⊢let (rename-pres {ρ = ρ} ⊢ρ ⊢M) (rename-pres {ρ = ext ρ} (ext-pres {ρ = ρ} ⊢ρ) ⊢N)
rename-pres ⊢ρ (⊢rcd ⊢Ms dfs) = ⊢rcd (ren-args-pres ⊢ρ ⊢Ms ) dfs
rename-pres {ρ = ρ} ⊢ρ (⊢# {d = d} ⊢R lif liA) = ⊢# {d = d}(rename-pres {ρ = ρ} ⊢ρ ⊢R) lif liA
rename-pres {ρ = ρ} ⊢ρ (⊢<: ⊢M lt) = ⊢<: (rename-pres {ρ = ρ} ⊢ρ ⊢M) lt
ren-args-pres ⊢ρ ⊢*nil = ⊢*nil
ren-args-pres {ρ = ρ} ⊢ρ (⊢*cons ⊢M ⊢Ms) =
let IH = ren-args-pres {ρ = ρ} ⊢ρ ⊢Ms in
⊢*cons (rename-pres {ρ = ρ} ⊢ρ ⊢M) IH
WTSubst : Context → Subst → Context → Set
WTSubst Γ σ Δ = ∀ {A x} → Γ ∋ x ⦂ A → Δ ⊢ ⟪ σ ⟫ (` x) ⦂ A
exts-pres : ∀ {Γ Δ σ B}
→ WTSubst Γ σ Δ
--------------------------------
→ WTSubst (Γ , B) (exts σ) (Δ , B)
exts-pres {σ = σ} Γ⊢σ Z = ⊢` Z
exts-pres {σ = σ} Γ⊢σ (S {x = x} ∋x)
rewrite exts-suc-rename σ x = rename-pres {ρ = ↑ 1} S (Γ⊢σ ∋x)
subst-args : ∀ {Γ Δ σ}{n}{Ms : Args (repeat 0 n)}{A}
→ WTSubst Γ σ Δ
→ Γ ⊢* Ms ⦂ A
-----------------
→ Δ ⊢* ⟪ σ ⟫₊ Ms ⦂ A
subst : ∀ {Γ Δ σ N A}
→ WTSubst Γ σ Δ
→ Γ ⊢ N ⦂ A
---------------
→ Δ ⊢ ⟪ σ ⟫ N ⦂ A
subst Γ⊢σ (⊢` eq) = Γ⊢σ eq
subst {σ = σ} Γ⊢σ (⊢λ ⊢N) = ⊢λ (subst{σ = exts σ}(exts-pres {σ = σ} Γ⊢σ) ⊢N)
subst {σ = σ} Γ⊢σ (⊢· ⊢L ⊢M) = ⊢· (subst{σ = σ} Γ⊢σ ⊢L) (subst{σ = σ} Γ⊢σ ⊢M)
subst {σ = σ} Γ⊢σ (⊢μ ⊢M) = ⊢μ (subst{σ = exts σ} (exts-pres{σ = σ} Γ⊢σ) ⊢M)
subst Γ⊢σ (⊢$ e) = ⊢$ e
subst {σ = σ} Γ⊢σ (⊢let ⊢M ⊢N) =
⊢let (subst {σ = σ} Γ⊢σ ⊢M) (subst {σ = exts σ} (exts-pres {σ = σ} Γ⊢σ) ⊢N)
subst Γ⊢σ (⊢rcd ⊢Ms dfs) = ⊢rcd (subst-args Γ⊢σ ⊢Ms ) dfs
subst {σ = σ} Γ⊢σ (⊢# {d = d} ⊢R lif liA) =
⊢# {d = d} (subst {σ = σ} Γ⊢σ ⊢R) lif liA
subst {σ = σ} Γ⊢σ (⊢<: ⊢N lt) = ⊢<: (subst {σ = σ} Γ⊢σ ⊢N) lt
subst-args Γ⊢σ ⊢*nil = ⊢*nil
subst-args {σ = σ} Γ⊢σ (⊢*cons ⊢M ⊢Ms) =
⊢*cons (subst {σ = σ} Γ⊢σ ⊢M) (subst-args Γ⊢σ ⊢Ms)
substitution : ∀{Γ A B M N}
→ Γ ⊢ M ⦂ A
→ (Γ , A) ⊢ N ⦂ B
---------------
→ Γ ⊢ N [ M ] ⦂ B
substitution {Γ}{A}{B}{M}{N} ⊢M ⊢N = subst {σ = M • ↑ 0} G ⊢N
where
G : ∀ {A₁ : Type} {x : ℕ}
→ (Γ , A) ∋ x ⦂ A₁ → Γ ⊢ ⟪ M • ↑ 0 ⟫ (` x) ⦂ A₁
G {A₁} {zero} Z = ⊢M
G {A₁} {suc x} (S ∋x) = ⊢` ∋x
insert-inversion : ∀{n}{M}{i : Fin n}{Ms : Args (repeat 0 n)}
{As : Vec Type n}
→ ∅ ⊢* insert M i Ms ⦂ As
→ Σ[ B ∈ Type ] ∅ ⊢ M ⦂ B × (∀ M' → ∅ ⊢ M' ⦂ B → ∅ ⊢* insert M' i Ms ⦂ As)
insert-inversion {suc n} {M} {0F} {cons (ast M') Ms} (⊢*cons {A = A} ⊢M ⊢Ms) =
⟨ A , ⟨ ⊢M , (λ M' z → ⊢*cons z ⊢Ms) ⟩ ⟩
insert-inversion {suc n} {M} {suc i} {cons (ast M') Ms} (⊢*cons ⊢M ⊢Ms)
with insert-inversion {n} {M} {i} {Ms} ⊢Ms
... | ⟨ B , ⟨ ⊢M' , imp ⟩ ⟩ = ⟨ B , ⟨ ⊢M' , (λ M' z → ⊢*cons ⊢M (imp M' z)) ⟩ ⟩
plug-inversion : ∀{M F A}
→ ∅ ⊢ plug M F ⦂ A
----------------------------------------------------------------
→ Σ[ B ∈ Type ] ∅ ⊢ M ⦂ B × (∀ M' → ∅ ⊢ M' ⦂ B → ∅ ⊢ plug M' F ⦂ A)
plug-inversion {M} {□· N} {A} (⊢· {A = A'} ⊢M ⊢N) =
⟨ A' ⇒ A , ⟨ ⊢M , (λ M' z → ⊢· z ⊢N) ⟩ ⟩
plug-inversion {M} {(L ·□) v} {A} (⊢· {A = A'} ⊢L ⊢M) =
⟨ A' , ⟨ ⊢M , (λ M' → ⊢· ⊢L) ⟩ ⟩
plug-inversion {M} {let□ N} {A} (⊢let {A = A'} ⊢M ⊢N) =
⟨ A' , ⟨ ⊢M , (λ M' z → ⊢let z ⊢N) ⟩ ⟩
plug-inversion {F = rcd□ i fs Ms} (⊢rcd ⊢Ms dfs)
with insert-inversion ⊢Ms
... | ⟨ A' , ⟨ ⊢M , imp ⟩ ⟩ =
⟨ A' , ⟨ ⊢M , (λ M' ⊢M' → ⊢rcd (imp M' ⊢M') dfs) ⟩ ⟩
plug-inversion {F = □# f} (⊢# {n = n}{fs}{As}{d} ⊢M lif liA) =
⟨ Record n fs As , ⟨ ⊢M , (λ M' z → ⊢# {d = d} z lif liA) ⟩ ⟩
plug-inversion {L} {F} {B} (⊢<: ⊢M A<:B)
with plug-inversion {L} {F} ⊢M
... | ⟨ A' , ⟨ ⊢M' , imp ⟩ ⟩ =
⟨ A' , ⟨ ⊢M' , (λ M' x → ⊢<: (imp M' x) A<:B) ⟩ ⟩
getfield-pres : ∀{n}{As : Vec Type n}{A}{Ms : Args (repeat 0 n)}{i : Fin n}
→ ∅ ⊢* Ms ⦂ As
→ As ❲ i ❳ ≡ A
→ ∅ ⊢ Ms 〘 i 〙 ⦂ A
getfield-pres {i = 0F} (⊢*cons ⊢M ⊢Ms) refl = ⊢M
getfield-pres {i = suc i} (⊢*cons ⊢M ⊢Ms) As[i]=A = getfield-pres ⊢Ms As[i]=A
preserve : ∀ {M N A}
→ ∅ ⊢ M ⦂ A
→ M —→ N
----------
→ ∅ ⊢ N ⦂ A
preserve ⊢M (ξ {M}{M′} F M—→M′)
with plug-inversion ⊢M
... | ⟨ B , ⟨ ⊢M' , plug-wt ⟩ ⟩ = plug-wt M′ (preserve ⊢M' M—→M′)
preserve (⊢μ ⊢M) β-μ = substitution (⊢μ ⊢M) ⊢M
preserve (⊢· ⊢L ⊢M) (β-λ vV)
with canonical-fun ⊢L V-λ
... | Fun-λ ⊢N (<:-fun A2A1 BA) = ⊢<: (substitution (⊢<: ⊢M A2A1) ⊢N) BA
preserve (⊢· ⊢L ⊢M) δ
with canonical-fun ⊢L V-const
... | Fun-prim (<:-fun A1b pA)
rewrite inversion-<:-base A1b
with canonical-base ⊢M V-const
... | base-const = ⊢<: (⊢$ refl) pA
preserve (⊢let ⊢M ⊢N) (β-let vV) = substitution ⊢M ⊢N
preserve (⊢# {d = d}{i} ⊢R lif liA) (β-# {j = j} lif2)
with canonical-rcd {d = d} ⊢R V-rcd
... | rcd {As = As'}{d = d'} ⊢Ms (<:-rcd fs⊆fs' As'<:As)
with lookup-⊆ {i = i} fs⊆fs'
... | ⟨ k , fsi=fs'k ⟩
with getfield-pres {i = k} ⊢Ms refl
... | ⊢Ms[k]
rewrite distinct-lookup-eq d' (trans lif2 (trans (sym lif) fsi=fs'k))
with As'<:As {i}{j} (trans lif2 (sym lif))
... | lt rewrite liA = ⊢<: ⊢Ms[k] lt
preserve (⊢<: ⊢M A<:B) M—→N = ⊢<: (preserve ⊢M M—→N) A<:B
Add variants to the language of this Chapter and update the proofs of progress and preservation. The variant type is a generalization of a sum type, similar to the way the record type is a generalization of product. The following summarizes the treatement of variants in TAPL. A variant type is traditionally written:
〈l₁:A₁, ..., lᵤ:Aᵤ〉
The term for introducing a variant is
〈l=t〉
and the term for eliminating a variant is
case L of 〈l₁=x₁〉 ⇒ M₁ | ... | 〈lᵤ=xᵤ〉 ⇒ Mᵤ
The typing rules for these terms are
(T-Variant)
Γ ⊢ Mⱼ : Aⱼ
---------------------------------
Γ ⊢ 〈lⱼ=Mⱼ〉 : 〈l₁=A₁, ... , lᵤ=Aᵤ〉
(T-Case)
Γ ⊢ L : 〈l₁=A₁, ... , lᵤ=Aᵤ〉
∀ i ∈ 1..u, Γ,xᵢ:Aᵢ ⊢ Mᵢ : B
---------------------------------------------------
Γ ⊢ case L of 〈l₁=x₁〉 ⇒ M₁ | ... | 〈lᵤ=xᵤ〉 ⇒ Mᵤ : B
The non-algorithmic subtyping rules for variants are
(S-VariantWidth)
------------------------------------------------------------
〈l₁=A₁, ..., lᵤ=Aᵤ〉 <: 〈l₁=A₁, ..., lᵤ=Aᵤ, ..., lᵤ₊ₓ=Aᵤ₊ₓ〉
(S-VariantDepth)
∀ i ∈ 1..u, Aᵢ <: Bᵢ
---------------------------------------------
〈l₁=A₁, ..., lᵤ=Aᵤ〉 <: 〈l₁=B₁, ..., lᵤ=Bᵤ〉
(S-VariantPerm)
∀i∈1..u, ∃j∈1..u, kⱼ = lᵢ and Aⱼ = Bᵢ
----------------------------------------------
〈k₁=A₁, ..., kᵤ=Aᵤ〉 <: 〈l₁=B₁, ..., lᵤ=Bᵤ〉
Come up with an algorithmic subtyping rule for variant types.
Revise this formalization of records with subtyping (including proofs of progress and preservation) to use the non-algorithmic subtyping rules for Chapter 15 of TAPL, which we list here:
(S-RcdWidth)
--------------------------------------------------------------
{ l₁:A₁, ..., lᵤ:Aᵤ, ..., lᵤ₊ₓ:Aᵤ₊ₓ } <: { l₁:A₁, ..., lᵤ:Aᵤ }
(S-RcdDepth)
∀i∈1..u, Aᵢ <: Bᵢ
----------------------------------------------
{ l₁:A₁, ..., lᵤ:Aᵤ } <: { l₁:B₁, ..., lᵤ:Bᵤ }
(S-RcdPerm)
∀i∈1..u, ∃j∈1..u, kⱼ = lᵢ and Aⱼ = Bᵢ
----------------------------------------------
{ k₁:A₁, ..., kᵤ:Aᵤ } <: { l₁:B₁, ..., lᵤ:Bᵤ }
You will most likely need to prove inversion lemmas for the subtype relation of the form:
If S <: T₁ ⇒ T₂, then S ≡ S₁ ⇒ S₂, T₁ <: S₁, and S₂ <: T₂, for some S₁, S₂.
If S <: { lᵢ : Tᵢ | i ∈ 1..n }, then S ≡ { kⱼ : Sⱼ | j ∈ 1..m }
and { lᵢ | i ∈ 1..n } ⊆ { kⱼ | j ∈ 1..m }
and Sⱼ <: Tᵢ for every i and j such that lᵢ = kⱼ.