Skip to content

Latest commit

 

History

History
1265 lines (1077 loc) · 50.5 KB

Unification.lagda.md

File metadata and controls

1265 lines (1077 loc) · 50.5 KB

Imports

open import Agda.Primitive using (lzero)
open import Data.Empty using (⊥; ⊥-elim)
open import Data.Bool using (Bool; true; false; _∨_)
open import Data.List using (List; []; _∷_; length; _++_)
open import Data.List.Relation.Unary.Any using (here; there)
open import Data.Maybe
open import Data.Nat using (ℕ; zero; suc; _+_; _<_; _≤_; z≤n; s≤s; _<?_){- ; _≤′_; ≤′-refl; ≤′-step; _<′_)-}
open import Data.Nat.Properties
  using (m≤m+n; m≤n+m; ≤-step; ≤-pred; n≤1+n; 1+n≰n; ≤-refl; +-comm; +-assoc;
         +-mono-≤; ≤-reflexive; ≤∧≢⇒<) {-≤⇒≤′; ≤′⇒≤; ≤-trans)-}
open Data.Nat.Properties.≤-Reasoning
  using (_≤⟨_⟩_)
  renaming (begin_ to begin≤_; _∎ to _QED)
open import Data.Nat.Solver using (module +-*-Solver)
open import Data.Product using (_×_; Σ; Σ-syntax; ∃; ∃-syntax; proj₁; proj₂)
   renaming (_,_ to ⟨_,_⟩)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Data.Unit using (⊤; tt)
open import Data.Vec using (Vec; []; _∷_)
open import Relation.Nullary using (Dec; yes; no; ¬_)
open import Relation.Binary.PropositionalEquality
   using (_≡_; _≢_; refl; sym; inspect; [_]; cong; cong₂)
open Relation.Binary.PropositionalEquality.≡-Reasoning
   using (begin_; _≡⟨⟩_; _≡⟨_⟩_; _∎)
open import FiniteSet

module Unification
    (Op : Set)
    (op-eq? : (x : Op) → (y : Op) → Dec (x ≡ y))
    (arity : Op → ℕ) where

open import FirstOrderTerms Op op-eq? arity

Introduction to Unification

This chapter lays the groundwork for the chapter on unification-based type inference (TypeInference). Type inference produces equations over types, such as

α = β ⇒ Nat
Bool = β

where the α and β are unknown type variables that need to be solved. For the example, a solution to the above equations is

α = Bool ⇒ Nat
β = Bool

From a syntactic point of view, types are an instance of a more general construction known as first-order terms, which are recursively defined to include variables, and function symbols applied to zero or more first-order terms. The module FirstOrderTerms defines first-order terms, substitution, and properties about them. The module also defines a predicate IdemSubst for idempotent substitutions which are substitutions σ such that

subst σ (sust σ M) ≡ subst σ M

The IdemSubst predicate does not directly state this property, but instead places restrictions on the form of a substitution to make sure it is idempotent. We make use of IdemSubst in several of the proofs in this chapter.

Equations over first-order terms can be solved using unification. In this chapter we study a particularly lucid unification algorithm by Martelli and Montanari (TOPLAS 1982).

We represent an equation as a pair of terms, and a set of equations as a list of pairs of terms. We introduce the notation L ≐ M for an equation between two terms.

Equations : Set
Equations = List (Term × Term)

infix 4 _≐_
pattern _≐_ L M = ⟨ L , M ⟩

We use the following helper function for adding a bunch of new equations.

private
  append-eqs : ∀{n} → Vec Term n → Vec Term n → Equations → Equations
  append-eqs {zero} Ms Ls eqs = eqs
  append-eqs {suc n} (M ∷ Ms) (L ∷ Ls) eqs = (M ≐ L) ∷ append-eqs Ms Ls eqs

The goal of a unification algorithm is to find a substitution σ that, when applied to both sides of each equation, makes the two sides syntacticaly equal. In such a case we say that the substitution σ unifies the equations.

_unifies_ : Equations → Equations → Set
σ unifies [] = ⊤
σ unifies ((L ≐ M) ∷ eqs) = (subst σ L ≡ subst σ M)  ×  σ unifies eqs

The unification algorithm of Martelli and Montanari considers one equation at a time from the list of equations eqs and performs one of the following actions. In the process, the algorithm accumulates the solution, a substitution σ.

  1. Remove trivial equations:

     (` x ≐ ` x) ∷ eqs , σ    becomes    eqs , σ
    
  2. Eliminate a variable via substitution:

     (` x ≐ M) ∷ eqs , σ    becomes    [ M / x] eqs , (` x ≐ M) ∷ [ M / x] σ
    

    and

     (M ≐ ` x) ∷ eqs , σ    becomes    [ M / x] eqs , (` x ≐ M) ∷ [ M / x] σ
    

    provided that x ∉ vars M (this is known as the occurs check). Otherwise report that there are no solutions.

  3. Decompose an equality on function symbols

     (f ⦅ M₁ ... Mᵤ ⦆ ≐ f' ⦅ L₁ ... Lᵤ ⦆) ∷ eqs , σ    becomes    (M₁ ≐ L₁) ∷ ... ∷ (Mᵤ ≐ Lᵤ) ∷ eqs , σ
    

    provided that f ≡ f'. Otherwise report that there are no solutions.

The rest of this Chapter defines a unify function that implements the algorithm of Martelli and Montanari and proves that it is correct. We first prove some necessary properties about unifies, in particular, that unifies is reflexive, that unifies is preserved and reflected by substitution, and that there are no unifiers for an equation of the form x ≐ M when x occurs in M. Then we turn to the proof of termination of Martelli and Montanari's unification algorithm, defining a measure function and proving lemmas that show the measure decreases for each of the recursive calls. Those lemmas then enable the definition of the unify function by well-founded recursion on the measure. Finally, we prove that unify is correct, which is to say that unify is sound and complete:

  1. (Soundness) If it returns a substitution σ, then σ unifies the equations.
  2. (Completeness) If it returns no-solution, then there are no substitutions that unify the equations.

Properties of Unifiers

The unifies relation is reflexive

We shall prove that

σ unifies σ

provided that σ is idempotent. The proof is by induction on σ and the base case is trivial. For the induction step, we need to show that

σ' unifies σ'
→ (` x ≐ M) ∷ σ'  unifies  (` x ≐ M) ∷ σ'

So we need to show that

(1)  subst ((` x ≐ M) ∷ σ') (` x) ≡ subst ((` x ≐ M) ∷ σ') M
(2)  (` x ≐ M) ∷ σ'  unifies σ'

For the proof of (1), we have

subst ((` x ≐ M) ∷ σ') (` x)  ≡    (definition of subst)
M                             ≡    (σ is idempotent)
((` x ≐ M) ∷ σ') M                   

We generalize (2) to the upcoming lemma named no-vars→ext-unifies, which separates the two occurences of σ' into separate variables, enabling a proof by induction. The proof requires another lemma, ext-subst, which states that extending a substitution with an equation x ≐ M does not change the result of applying the substitution to a term L if x does not occur in L or in σ.

private
  ext-subst : ∀{σ}{x}{M}{L}
     → x ∉ vars L  →  x ∉ vars-eqs σ
     → subst ((` x ≐ M) ∷ σ) L ≡ subst σ L
  ext-subst-vec : ∀{σ}{x}{M}{n}{Ls : Vec Term n}
     → x ∉ vars-vec Ls  →  x ∉ vars-eqs σ
     → subst-vec ((` x ≐ M) ∷ σ) Ls ≡ subst-vec σ Ls
  ext-subst {σ} {x} {M} {` y} x∉L x∉σ
      with x ≟ y
  ... | yes refl = ⊥-elim (x∉L (x∈⁅x⁆ x))
  ... | no xy = subst-var-neq xy
  ext-subst {σ} {x} {M} {op ⦅ Ls ⦆} x∉L x∉σ =
      cong (λ □ → op ⦅ □ ⦆) (ext-subst-vec {σ}{x}{M}{Ls = Ls} x∉L x∉σ)
  ext-subst-vec {σ} {x} {M} {zero} {Ls} x∉Ls x∉σ = refl
  ext-subst-vec {σ} {x} {M} {suc n} {L ∷ Ls} x∉L∪Ls x∉σ =
      cong₂ _∷_ (ext-subst {σ}{x}{M}{L} (λ x∈L → x∉L∪Ls (p⊆p∪q _ _ x∈L)) x∉σ)
                (ext-subst-vec {σ}{x}{M}{n}{Ls} (λ x∈Ls → x∉L∪Ls (q⊆p∪q _ _ x∈Ls)) x∉σ)

In the following proof of no-vars→ext-unifies, the important reasoning happens in the last part of the where clause, in the proof that

subst σ L ≡ subst σ N
→ subst ((` x ≐ M) ∷ σ) L ≡ subst ((` x ≐ M) ∷ σ) N

Working from right-to-left in the goal, we apply the ext-subst lemma, then the premise, and then the ext-subst lemma again but in reverse.

private
  no-vars→ext-unifies : ∀{σ}{x}{M}{eqs}
     → σ unifies eqs
     → x ∉ vars-eqs eqs
     → x ∉ vars-eqs σ
     → ((` x ≐ M) ∷ σ) unifies eqs
  no-vars→ext-unifies {σ} {x} {M} {[]} σeqs x∉eqs x∉σ = tt
  no-vars→ext-unifies {σ} {x} {M} {(L ≐ N) ∷ eqs} ⟨ σL=σN , σeqs ⟩ x∉L∪N∪eqs x∉σ =
    let IH = no-vars→ext-unifies {σ} {x} {M} {eqs} σeqs x∉eqs x∉σ in
    ⟨ [x=M]σL=[x=M]σN , IH ⟩
      where
      x∉L : x ∉ vars L
      x∉L = λ x∈L → x∉L∪N∪eqs (p⊆p∪q _ _ x∈L ) 
      x∉N : x ∉ vars N
      x∉N = λ x∈N →
          let x∈L∪N∪eqs = p⊆r→p⊆q∪r _ _ _ (p⊆p∪q _ _) x∈N in
          x∉L∪N∪eqs x∈L∪N∪eqs
      x∉eqs : x ∉ vars-eqs eqs
      x∉eqs = λ x∈eqs →
        let x∈L∪N∪eqs = p⊆r→p⊆q∪r _ _ _ (p⊆r→p⊆q∪r _ _ _ ⊆-refl) x∈eqs in
        x∉L∪N∪eqs x∈L∪N∪eqs
        
      [x=M]σL=[x=M]σN =
          begin
              subst ((` x ≐ M) ∷ σ) L
          ≡⟨ ext-subst {σ}{x}{M}{L} x∉L x∉σ ⟩
              subst σ L
          ≡⟨ σL=σN ⟩
              subst σ N
          ≡⟨ sym (ext-subst {σ}{x}{M}{N} x∉N x∉σ) ⟩
              subst ((` x ≐ M) ∷ σ) N
          ∎

The following formalizes the proof of the reflexivity property.

  unifies-refl : ∀{σ} → IdemSubst σ → σ unifies σ
  unifies-refl {[]} empty = tt
  unifies-refl {(` x ≐ M) ∷ σ'} (insert x∉M x∉σ' M∩σ⊆∅ SΣ) =
      ⟨ G1 , G2 ⟩
      where
      H = begin⊆
              vars M ∩ (⁅ x ⁆ ∪ dom σ')
          ⊆⟨ ⊆-reflexive (∪-distribˡ-∩ {vars M}) ⟩
              (vars M ∩ ⁅ x ⁆) ∪ (vars M ∩ dom σ')
          ⊆⟨ p⊆r→q⊆s→p∪q⊆r∪s (x∉p→p∩⁅x⁆⊆∅ _ _ x∉M) M∩σ⊆∅ ⟩
              ∅ ∪ ∅
          ⊆⟨ ⊆-reflexive (p∪∅≡p _) ⟩
              ∅
          ■
      G1 = begin
               subst ((` x ≐ M) ∷ σ') (` x)
           ≡⟨ subst-var-eq {x}{M}{σ'} ⟩
               M
           ≡⟨ sym (M∩domσ⊆∅→subst-id H) ⟩
               subst ((` x ≐ M) ∷ σ') M
           ∎
      IH : σ' unifies σ'
      IH = unifies-refl {σ'} SΣ
      G2 : ((` x ≐ M) ∷ σ') unifies σ'
      G2 = no-vars→ext-unifies IH x∉σ' x∉σ'

Substitution preserves unifiers

Next we prove that substitution preserves unifiers.

  subst θ (` x) ≡ subst θ M
→ θ unifies eqs
→ θ unifies ([ M / x ] eqs)

To do so, we'll need to prove that substitution preserves the unification of each equation.

  subst σ (` x) ≡ subst σ M
→ subst σ L ≡ subst σ N
→ subst σ ([ x := M ] L) ≡ subst σ ([ x := M ] N)

We prove this as a corollary of the following lemma, which establishes that a substitution σ always unifies both N and [ x := M ] N under the assumption that subst σ x ≡ subst σ M.

  subst-invariant : ∀{N}{x}{σ}{M}
    → subst σ (` x) ≡ subst σ M
    → subst σ N ≡ subst σ ([ x := M ] N)
  subst-vec-invariant : ∀{n}{Ns : Vec Term n}{z}{σ}{M}
    → subst σ (` z) ≡ subst σ M
    → subst-vec σ Ns ≡ subst-vec σ ([ z ::= M ] Ns)
  subst-invariant {` x} {z} {σ} {M} σzM
      with z ≟ x
  ... | yes refl = σzM
  ... | no zx = refl
  subst-invariant {op ⦅ Ns ⦆} {z} {σ} {M} σzM =
      cong (λ □ → op ⦅ □ ⦆) (subst-vec-invariant σzM)
  subst-vec-invariant {zero} {Ns} σzM = refl
  subst-vec-invariant {suc n} {N ∷ Ns}{z}{σ}{M} σzM
      rewrite subst-invariant {N}{z}{σ}{M} σzM
      | subst-vec-invariant {n} {Ns}{z}{σ}{M} σzM = refl

To prove that substitution preserves the unification of one equation, we reason equationally in three steps, applying subst-invariant in reverse, then the second premise, and then subst-invariant in the forward direction.

  subst-pres-equation : ∀{L}{N}{x}{σ}{M}
    → subst σ (` x) ≡ subst σ M
    → subst σ L ≡ subst σ N
    → subst σ ([ x := M ] L) ≡ subst σ ([ x := M ] N)
  subst-pres-equation {L}{N}{x}{σ}{M} σxM σLM =
      begin
          subst σ ([ x := M ] L)
      ≡⟨ sym (subst-invariant {L} σxM) ⟩
          subst σ L
      ≡⟨ σLM ⟩
          subst σ N
      ≡⟨ subst-invariant {N} σxM ⟩
          subst σ ([ x := M ] N)
      ∎

The proof that substitution preserves unifiers follows by a straightforward proof by induction.

  subst-pres : ∀{eqs σ x M}
    → subst σ (` x) ≡ subst σ M
    → σ unifies eqs
    → σ unifies ([ M / x ] eqs)
  subst-pres {[]} eq σeqs = tt
  subst-pres {(L ≐ N) ∷ eqs} {σ}{x}{M} eq ⟨ σLM , σeqs ⟩ =
    ⟨ subst-pres-equation {L = L}{N = N} eq σLM , (subst-pres {eqs} eq σeqs) ⟩

The append-eqs operation also preserves unifiers.

  append-pres : ∀{n}{Ms Ls : Vec Term n}{eqs}{σ}
     → σ unifies eqs
     → subst-vec σ Ms ≡ subst-vec σ Ls
     → σ unifies append-eqs Ms Ls eqs
  append-pres {zero} {Ms} {Ls} σeqs σMsLs = σeqs
  append-pres {suc n} {M ∷ Ms} {L ∷ Ls} σeqs σMLMsLs
      with ∷≡-inversion σMLMsLs
  ... | ⟨ σML , σMsLs ⟩ = ⟨ σML , (append-pres σeqs σMsLs) ⟩

Substitution reflects unifiers

Substitution also reflects unifiers. Thankfully, this is also a corollary of the subst-invariant lemma. We prove that substitution reflects the unification of one equation in a sequence of three steps, similar to the proof of subst-pres-equation.

  subst-reflect-equation : ∀{L}{N}{z}{θ}{M}
    → subst θ (` z) ≡ subst θ M
    → subst θ ([ z := M ] L) ≡ subst θ ([ z := M ] N)
    → subst θ L ≡ subst θ N
  subst-reflect-equation {L}{N}{z}{θ}{M} θzM θLM =
      begin
          subst θ L
      ≡⟨ subst-invariant {L} θzM ⟩
          subst θ ([ z := M ] L)
      ≡⟨ θLM ⟩
          subst θ ([ z := M ] N)
      ≡⟨ sym (subst-invariant {N} θzM) ⟩
          subst θ N
      ∎

The proof that substitution reflects unifiers follows by a straightforward proof by induction.

  subst-reflect : ∀{eqs θ x M}
    → θ unifies ([ M / x ] eqs)
    → subst θ (` x) ≡ subst θ M
    → θ unifies eqs
  subst-reflect {[]} {θ} {x} {M} θ[M/x]eqs θx=θM = tt
  subst-reflect {⟨ L , N ⟩ ∷ eqs} {θ} {x} {M} ⟨ θ[x:=M]L=θ[x:=M]N , θ[M/x]eqs ⟩ θx=θM =
      ⟨ subst-reflect-equation {L = L}{N} θx=θM θ[x:=M]L=θ[x:=M]N ,
        subst-reflect {eqs}{θ}{x}{M} θ[M/x]eqs θx=θM ⟩

The append-eqs operation reflects unifiers.

  subst-vec-reflect : ∀{n}{Ms Ls : Vec Term n}{eqs}{θ}
     → θ unifies append-eqs Ms Ls eqs
     → (subst-vec θ Ms ≡ subst-vec θ Ls)  × θ unifies eqs
  subst-vec-reflect {zero} {[]} {[]} {eqs} {θ} θMs,Ls,eqs = ⟨ refl , θMs,Ls,eqs ⟩
  subst-vec-reflect {suc n} {M ∷ Ms} {L ∷ Ls} {eqs} {θ} ⟨ θM=θL , θMs,Ls,eqs ⟩ 
      with subst-vec-reflect {n} {Ms} {Ls} {eqs} {θ} θMs,Ls,eqs
  ... | ⟨ θMs=θLs , θeqs ⟩ =     
      ⟨ cong₂ _∷_ θM=θL θMs=θLs , θeqs ⟩

A failed occurs-check implies no solutions

An equation of the form x ≐ f ⦅ Ms ⦆ where x ∈ vars (f ⦅ Ms ⦆) has no unifiers. We shall prove this by contradiction, assuming that there is a unifier σ and deriving false. From subst σ x ≡ subst σ (f ⦅ Ms ⦆), we know that the number of operators (aka. function symbols) in subst σ x must be the same as the number of operators in subst σ (f ⦅ Ms ⦆). However, we shall prove a lemma that if x ∈ vars (f ⦅ Ms ⦆), then the number of operators in subst σ x is strictly less than the number of operators in subst σ (f ⦅ Ms ⦆). After all, f counts for one operator and subst σ Ms contains at least one copy of subst σ x. Thus we have a contradiction.

We begin by defining functions for counting the number of operators in a term, in a vector of terms, and in a list of equations.

  num-ops : Term → ℕ
  num-ops-vec : ∀{n} → Vec Term n → ℕ
  num-ops (` x) = 0
  num-ops (op ⦅ Ms ⦆) = suc (num-ops-vec Ms)
  num-ops-vec {zero} Ms = 0
  num-ops-vec {suc n} (M ∷ Ms) = num-ops M + num-ops-vec Ms

  num-ops-eqs : Equations → ℕ
  num-ops-eqs [] = 0
  num-ops-eqs ((L ≐ M) ∷ eqs) = num-ops L + num-ops M + num-ops-eqs eqs

We define the following function for identifying terms that are operator applications.

  is-op : Term → Set
  is-op (` x) = ⊥
  is-op (op ⦅ Ms ⦆) = ⊤

The main lemma proves that if x ∈ vars M, the number of operators in subst σ x is less than the number of operators in subst σ M. The proof is a straightforward induction on the term M.

  num-ops-less : ∀ {M}{x σ}
     → x ∈ vars M  →  is-op M
     → num-ops (subst σ (` x)) < num-ops (subst σ M)
  num-ops-less-vec : ∀ {n}{Ms : Vec Term n}{x σ}
     → x ∈ vars-vec Ms
     → num-ops (subst σ (` x)) ≤ num-ops-vec (subst-vec σ Ms)
  num-ops-less {op ⦅ Ms ⦆}{x}{σ} x∈Ms opM =
     s≤s (num-ops-less-vec {Ms = Ms}{x}{σ} x∈Ms)
  num-ops-less-vec {zero} {[]} {x} {σ} x∈Ms = ⊥-elim (∉∅ {x} x∈Ms)
  num-ops-less-vec {suc n} {(` y) ∷ Ms} {x} {σ} x∈MMs
      with ∈p∪q→∈p⊎∈q x∈MMs
  ... | inj₁ x∈M
      with x ≟ y
  ... | yes refl = m≤m+n (num-ops (subst σ (` y))) (num-ops-vec (subst-vec σ Ms))
  ... | no xy = ⊥-elim ((x∉⁅y⁆ x y xy) x∈M)
  num-ops-less-vec {suc n} {(` y) ∷ Ms} {x} {σ} x∈MMs
      | inj₂ x∈Ms =
      let IH = num-ops-less-vec {n} {Ms}{x}{σ} x∈Ms in
      begin≤
          num-ops (subst σ (` x))
      ≤⟨ IH ⟩
          num-ops-vec (subst-vec σ Ms)
      ≤⟨ m≤n+m _ _ ⟩
          num-ops (subst σ (` y)) + num-ops-vec (subst-vec σ Ms)
      QED
  num-ops-less-vec {suc n} {(op ⦅ Ls ⦆) ∷ Ms} {x} {σ} x∈MMs
      with ∈p∪q→∈p⊎∈q x∈MMs
  ... | inj₁ x∈M =
      let σx<1+σLS = num-ops-less {(op ⦅ Ls ⦆)}{x}{σ} x∈M tt in
      begin≤
          num-ops (subst σ (` x))
      ≤⟨ ≤-pred σx<1+σLS ⟩
          num-ops-vec (subst-vec σ Ls)
      ≤⟨ m≤m+n _ _ ⟩
          num-ops-vec (subst-vec σ Ls) + num-ops-vec (subst-vec σ Ms)
      ≤⟨ n≤1+n _ ⟩
          suc (num-ops-vec (subst-vec σ Ls) + num-ops-vec (subst-vec σ Ms))
      QED
  num-ops-less-vec {suc n} {M ∷ Ms} {x} {σ} x∈MMs
      | inj₂ x∈Ms =
      let IH = num-ops-less-vec {n} {Ms}{x}{σ} x∈Ms in
      begin≤
          num-ops (subst σ (` x))
      ≤⟨ IH ⟩
          num-ops-vec (subst-vec σ Ms)
      ≤⟨ m≤n+m _ _ ⟩
          num-ops (subst σ M) + num-ops-vec (subst-vec σ Ms)
      QED

Thus, if x ∈ vars M, there is no solution to x ≐ M.

  occurs-no-soln : ∀{σ x M}
    → x ∈ vars M → is-op M
    → subst σ (` x) ≢ subst σ M
  occurs-no-soln {σ} x∈M opM σxM
      with num-ops-less {σ = σ} x∈M opM
  ... | σx<σM rewrite σxM =
        ⊥-elim (1+n≰n σx<σM)

Proof of Termination

We use well-founded recursion to define the unification function. We shall show that a lexicographic ordering of three numbers decreases with each recursive call. The numbers are

  1. the number of variables in the equations,
  2. the number of operators in the equations,
  3. the number of equations.

We prove that this particular lexicographic ordering is well-founded using the facts that products are well-founded (from the LexicographicOrdering module) and that less-than is well-founded (from Data.Nat.Induction).

  measure : Equations → Equations → ℕ × ℕ × ℕ
  measure eqs θ = ⟨ ∣ vars-eqs eqs ∣ , ⟨ num-ops-eqs eqs , suc (length eqs) ⟩ ⟩

  open import Data.Nat.Induction using (Acc; acc; <-wellFounded)
  open import LexicographicOrdering using (×-Lex; ×-wellFounded)
  open import Induction.WellFounded using (WellFounded)
  open import Relation.Binary using (Rel)

  _<₃_ : Rel (ℕ × ℕ × ℕ) _
  _<₃_ = ×-Lex _≡_ _<_ (×-Lex _≡_ _<_ _<_)

  <₃-wellFounded : WellFounded _<₃_
  <₃-wellFounded = ×-wellFounded <-wellFounded
                     (×-wellFounded <-wellFounded <-wellFounded)

We define the following convenience functions for proving that one triple is lexicogrpahically less than another triple.

  first-< : ∀ {k l m k' l' m'}
          → k < k'
          → ⟨ k , ⟨ l , m ⟩ ⟩ <₃ ⟨ k' , ⟨ l' , m' ⟩ ⟩
  first-< k<k' = inj₁ k<k'

  second-< : ∀ {k l m k' l' m'}
          → k ≤ k' → l < l'
          → ⟨ k , ⟨ l , m ⟩ ⟩ <₃ ⟨ k' , ⟨ l' , m' ⟩ ⟩
  second-< {k}{k' = k'} k≤k' l<l'
      with k ≟ k'
  ... | yes refl = inj₂ ⟨ refl , inj₁ l<l' ⟩
  ... | no k≢k' = inj₁ (≤∧≢⇒< k≤k' k≢k')

  third-< : ∀ {k l m k' l' m'}
          → k ≤ k' → l ≤ l' → m < m'
          → ⟨ k , ⟨ l , m ⟩ ⟩ <₃ ⟨ k' , ⟨ l' , m' ⟩ ⟩
  third-< {k}{l}{k' = k'}{l'} k≤k' l≤l' m<m'
      with k ≟ k'
  ... | no k≢k' = inj₁ (≤∧≢⇒< k≤k' k≢k')
  ... | yes refl
      with l ≟ l'
  ... | no l≢l' = inj₂ ⟨ refl , (inj₁ (≤∧≢⇒< l≤l' l≢l')) ⟩
  ... | yes refl = inj₂ ⟨ refl , (inj₂ ⟨ refl , m<m' ⟩) ⟩

When we remove a trivial equation, of the form x ≐ x, the number of variables and the number of operators either decrease or stays the same. Of course, the number of equations decreases by one.

  measure1 : ∀{eqs}{θ}{x} → measure eqs θ <₃ measure ((` x ≐ ` x) ∷ eqs) θ
  measure1 {eqs}{θ}{x} = third-< vars≤ ≤-refl eqs<
      where
      vars≤ : ∣ vars-eqs eqs ∣ ≤ ∣ vars-eqs ((` x ≐ ` x) ∷ eqs) ∣
      vars≤ =
          begin≤
              ∣ vars-eqs eqs ∣
          ≤⟨ ∣q∣≤∣p∪q∣ {⁅ x ⁆} {vars-eqs eqs} ⟩
              ∣ ⁅ x ⁆ ∪ vars-eqs eqs ∣
          ≤⟨ ∣q∣≤∣p∪q∣ {⁅ x ⁆} {⁅ x ⁆ ∪  vars-eqs eqs} ⟩
              ∣ ⁅ x ⁆ ∪ ⁅ x ⁆ ∪ vars-eqs eqs ∣
          ≤⟨ ≤-refl ⟩
              ∣ vars-eqs ((` x ≐ ` x) ∷ eqs) ∣
          QED
      eqs< : suc (length eqs) < suc (length ((` x ≐ ` x) ∷ eqs))
      eqs< = s≤s (s≤s ≤-refl)

When we eliminate a variable by substitution, we reduce the number of variables in the equation.

  vars-eqs-sub-less : ∀{M x eqs}
     → ¬ x ∈ vars M
     → ∣ vars-eqs ([ M / x ] eqs) ∣ < ∣ vars-eqs ((` x ≐ M) ∷ eqs) ∣
  vars-eqs-sub-less {M}{x}{eqs} x∉M =
      begin≤
          suc ∣ vars-eqs ([ M / x ] eqs) ∣
      ≤⟨ s≤s (p⊆q⇒∣p∣≤∣q∣ (vars-eqs-subst-∪ {eqs}{x}{M})) ⟩
          suc ∣ vars M ∪ (vars-eqs eqs - ⁅ x ⁆) ∣
      ≤⟨ ≤-reflexive (cong (λ □ → suc ∣ □ ∣) (distrib-∪-2 (vars M) _ _ (x∉p→p∩⁅x⁆⊆∅ _ _ x∉M))) ⟩
          suc ∣ (vars M ∪ vars-eqs eqs) - ⁅ x ⁆ ∣
      ≤⟨ ∣p-x∣<∣p∪x∣ _ _ ⟩
          ∣ (vars M ∪ vars-eqs eqs) ∪ ⁅ x ⁆ ∣
      ≤⟨ ≤-reflexive (cong (λ □ → ∣ □ ∣) (∪-comm _ _)) ⟩
          ∣ ⁅ x ⁆ ∪ vars M ∪ vars-eqs eqs ∣
      ≤⟨ ≤-refl ⟩
          ∣ vars-eqs ((` x ≐ M) ∷ eqs) ∣
      QED

For an equation of the form x ≐ M, the above lemma directly shows that the measure decreases.

  measure2 : ∀{eqs}{θ}{M}{x}
     → x ∉ vars M
     → measure ([ M / x ] eqs) ((` x ≐ M) ∷ [ M / x ] θ)
       <₃ measure ((` x ≐ M) ∷ eqs) θ
  measure2{eqs}{θ}{M}{x} x∉M = (first-< (vars-eqs-sub-less {M}{x}{eqs} x∉M))

For an equation of the form M ≐ x, we do a little extra work to flip around the conclusion of the lemma vars-eqs-sub-less to match what is needed in this case.

  measure3 : ∀{eqs}{θ}{M}{x}
     → x ∉ vars M
     → measure  ([ M / x ] eqs) ((` x ≐ M) ∷ [ M / x ] θ)
       <₃ measure ((M ≐ ` x) ∷ eqs) θ
  measure3 {eqs}{θ}{M}{x} x∉M
      with vars-eqs-sub-less {M}{x}{eqs} x∉M
  ... | vars< 
      rewrite sym (∪-assoc ⁅ x ⁆ (vars M) (vars-eqs eqs))
      | ∪-comm ⁅ x ⁆ (vars M)
      | ∪-assoc (vars M) ⁅ x ⁆ (vars-eqs eqs) = 
     first-< vars< 

When we decompose an equality between two function symbol applications, the number of variables stays the same. This is because the result of append-eqs is an equation with the same variables as there are in its input.

  var-eqs-append-≡ : ∀ {n} (Ms Ls : Vec Term n) eqs
     → vars-eqs (append-eqs Ms Ls eqs) ≡ vars-vec Ms ∪ vars-vec Ls ∪ vars-eqs eqs
  var-eqs-append-≡ {zero} [] [] eqs rewrite ∅∪p≡p (vars-eqs eqs) | ∅∪p≡p (vars-eqs eqs) = refl
  var-eqs-append-≡ {suc n} (M ∷ Ms) (L ∷ Ls) eqs 
      rewrite ∪-assoc (vars L) (vars-vec Ls) (vars-eqs eqs)
      | ∪-assoc (vars M) (vars-vec Ms) (vars L ∪ vars-vec Ls ∪ vars-eqs eqs)
      | sym (∪-assoc (vars-vec Ms) (vars L) (vars-vec Ls ∪ vars-eqs eqs))
      | ∪-comm (vars-vec Ms) (vars L) 
      | ∪-assoc (vars L) (vars-vec Ms) (vars-vec Ls ∪ vars-eqs eqs)
      | var-eqs-append-≡ {n} Ms Ls eqs =
      refl

When we decompose an equality between two function symbol applications, the number of operators is reduced by one. Towards proving that, we first prove that the result of append-eqs is an equation with the same number of operators as there are in its input.

  num-ops-append : ∀ {n} (Ms Ls : Vec Term n) eqs
     → num-ops-eqs (append-eqs Ms Ls eqs) ≡ num-ops-vec Ms + num-ops-vec Ls + num-ops-eqs eqs
  num-ops-append {zero} [] [] eqs = refl
  num-ops-append {suc n} (M ∷ Ms) (L ∷ Ls) eqs
      rewrite num-ops-append {n} Ms Ls eqs =
      G (num-ops M) (num-ops L) (num-ops-vec Ms) (num-ops-vec Ls) (num-ops-eqs eqs)
      where
      open +-*-Solver
      G : (nM nL nMs nLs neqs : ℕ)
          → (nM + nL) + ((nMs + nLs) + neqs) ≡ ((nM + nMs) + (nL + nLs)) + neqs
      G = solve 5 (λ nM nL nMs nLs neqs →
            (nM :+ nL) :+ ((nMs :+ nLs) :+ neqs) := ((nM :+ nMs) :+ (nL :+ nLs)) :+ neqs) refl

Putting these two pieces together, we prove that decomposing an equality between two function symbol applications causes the measure to decrease.

  measure4 : ∀{eqs}{θ}{op}{Ms Ls : Vec Term (arity op)}
     → measure (append-eqs Ms Ls eqs) θ
       <₃ measure ((op ⦅ Ms ⦆ ≐ op ⦅ Ls ⦆) ∷ eqs) θ
  measure4 {eqs}{θ}{op}{Ms}{Ls} = second-< vars≤ ops<
      where
      vars≤ : ∣ vars-eqs (append-eqs Ms Ls eqs) ∣ ≤ ∣ vars-vec Ms ∪ vars-vec Ls ∪ vars-eqs eqs ∣
      vars≤ rewrite var-eqs-append-≡ Ms Ls eqs = p⊆q⇒∣p∣≤∣q∣ ⊆-refl

      ops< : num-ops-eqs (append-eqs Ms Ls eqs) < suc (num-ops-vec Ms + suc (num-ops-vec Ls) + num-ops-eqs eqs)
      ops< rewrite num-ops-append Ms Ls eqs
           | +-comm (num-ops-vec Ms) (suc (num-ops-vec Ls))
           | +-comm (num-ops-vec Ls) (num-ops-vec Ms) = s≤s (≤-step ≤-refl)

The Unify Function

The unify function will take as input a list of equations and either return a substitution or an indication that there are no solutions to the equations. We define the following Result data type for these purposes.

data Result : Set where
  finished : Substitution → Result
  no-solution : Result

We define unify in terms of the following recursive helper function, unify-rec, that takes two extra parameters. The parameter σ is the substitution that has been accumulated so far, and that will eventually become the solution. The parameter of data type Acc _<₃_ (measure eqs σ) is used to ensure that the measure decreases on recursive calls. This data type has one constructor, acc, with one parameter, which we name rec below. When we apply rec to a proof that the measure decreases, we get another instance of Acc that is an appropriate argument for the recursive call to unify-rec.

To define unify-rec, we first pattern match on eqs. If it is empty, then unification is finished and we return the current substitution. If eqs is not empty, we pattern match on the first equation. If it is an equation between two variables, we either eliminate the equation (if the two variables are equal), or we eliminate one of the variables by substitution. If the equation is between a variable and an operator application, we eliminate the variable by substitution. However, we first check to see whether the variable occurs inside the operator application, in which case we halt with no solution. Finally, if the equation is between two operator applications, we check whether the two operators are equal. If not, there is no solution. Otherwise, we append the corresponding sub-terms to the equations and recursively call unify-rec.

private
  unify-rec : (eqs : Equations) → (σ : Substitution)
            → Acc _<₃_ (measure eqs σ) → Result
  unify-rec [] σ rec = finished σ
  unify-rec ((` x ≐ ` y) ∷ eqs) σ (acc rec)
      with x ≟ y
  ... | yes refl = unify-rec eqs σ (rec _ (measure1 {eqs}{σ}))
  ... | no xy =
      let eqs' = [ ` y / x ] eqs in
      let σ' = (` x ≐ ` y) ∷ [ ` y / x ] σ in
      unify-rec eqs' σ' (rec _ (measure2{eqs}{σ} (x∉⁅y⁆ _ _ xy)))
  unify-rec ((` x ≐ op ⦅ Ms ⦆) ∷ eqs) σ (acc rec)
      with occurs? x (op ⦅ Ms ⦆)
  ... | yes x∈M = no-solution
  ... | no x∉M =
      let eqs' = [ op ⦅ Ms ⦆ / x ] eqs in
      let σ' = (` x ≐ op ⦅ Ms ⦆) ∷ [ op ⦅ Ms ⦆ / x ] σ in
      unify-rec eqs' σ' (rec _ (measure2{eqs}{σ} x∉M))
  unify-rec ((op ⦅ Ms ⦆ ≐ ` x) ∷ eqs) σ (acc rec)
      with occurs? x (op ⦅ Ms ⦆)
  ... | yes x∈M = no-solution
  ... | no x∉M =
      let eqs' = [ op ⦅ Ms ⦆ / x ] eqs in
      let σ' = (` x ≐ op ⦅ Ms ⦆) ∷ [ op ⦅ Ms ⦆ / x ] σ in
      unify-rec eqs' σ' (rec _ (measure3{eqs}{σ} x∉M))
  unify-rec ((op ⦅ Ms ⦆ ≐ op' ⦅ Ls ⦆) ∷ eqs) σ (acc rec)
      with op-eq? op op'
  ... | yes refl = unify-rec (append-eqs Ms Ls eqs) σ (rec _ (measure4 {eqs}{σ}))
  ... | no neq = no-solution

With unify-rec complete, it is straightforward to define the unify function. We apply unify-rec to the empty substitution and a proof that <₃ is well founded.

unify : (eqs : Equations) → Result
unify eqs = unify-rec eqs [] (<₃-wellFounded (measure eqs []))

Proof that Unify is Correct

We shall now prove that the unify function is correct, i.e., that it is sound and complete with respect to unifies:

  1. (Soundness) If unify returns a substitution σ, then σ unifies the equations.
  2. (Completeness) If unify returns no-solution, then there are no substitutions that unify the equations.

The unify function merely kicks things off, and all the real work is done in unify-rec. So we shall prove a soundness lemma and a completeness lemma for unify-rec.

The unify-rec function has two preconditions:

  1. the current substitution σ is idempotent, and
  2. the variables in the domain of σ do not occur in the current equations (because we've eliminated them).

In the proofs of these soundness and completeness lemmas, to invoke the induction hypothesis, we need to establish the above two preconditions for the new substitution and the new set of equations. Regarding idempotency, we shall use the insert-subst lemma from the module TermSubstUnify. To satisfy one of the premises of that lemma, we sometimes need the following simple lemma that commutes the union of two sets.

private
  M∪x∪eqs : ∀ {M}{x}{eqs}{σ}
     → (vars M ∪ ⁅ x ⁆ ∪ vars-eqs eqs) ∩ dom σ ⊆ ∅
     → (⁅ x ⁆ ∪ vars M ∪ vars-eqs eqs) ∩ dom σ ⊆ ∅
  M∪x∪eqs {M}{x}{eqs}{σ} prem
      rewrite sym (∪-assoc (vars M) ⁅ x ⁆ (vars-eqs eqs))
      | ∪-comm (vars M) ⁅ x ⁆
      | ∪-assoc ⁅ x ⁆ (vars M) (vars-eqs eqs)
      = prem

We have some work to do regarding point 2, that the variables in the domain of the new substitution do not occur in the new list of equations.

When we remove a trivial equation of the form x ≐ x, the substitution σ remains unchanged so its obvious that the domain of σ is still disjoint from the variables in the remaining equations.

  xx-eqs∩dom⊆∅ : ∀ {x eqs σ}
     → vars-eqs ((` x ≐ ` x) ∷ eqs) ∩ dom σ ⊆ ∅
     → vars-eqs eqs ∩ dom σ ⊆ ∅
  xx-eqs∩dom⊆∅ {x}{eqs}{σ} prem
      rewrite sym (∪-assoc ⁅ x ⁆ ⁅ x ⁆ (vars-eqs eqs)) =
      begin⊆
      vars-eqs eqs ∩ dom σ                        ⊆⟨ p⊆r→q⊆s→p∩q⊆r∩s (q⊆p∪q _ _) ⊆-refl  ⟩
      ((⁅ x ⁆ ∪ ⁅ x ⁆) ∪ vars-eqs eqs) ∩ dom σ    ⊆⟨ prem ⟩
      ∅
      ■

When we eliminate a variable by substitution (equations of the form x ≐ M or M ≐ x with M ≡ op ⦅ Ms ⦆), the new substition is (x ≐ M) ∷ [ M / x ] σ and the new equations are [ M / x ] eqs, so we need to show that

vars-eqs ([ M / x ] eqs) ∩ (⁅ x ⁆ ∪ dom ([ M / x ] σ)) ⊆ ∅

assuming that

vars-eqs ((x ≐ M) ∷ eqs) ∩ dom σ ⊆ ∅

which is to say

(⁅ x ⁆ ∪ vars M ∪ vars-eqs eqs) ∩ dom σ ⊆ ∅

First, notice that because x ∉ dom σ,

dom ([ M / x ] σ) ≡ dom σ

which is lemma subst-dom in FirstOrderTerms. We use the following mini-lemma to derive x ∉ dom σ from (⁅ x ⁆ ∪ vars M ∪ vars-eqs eqs) ∩ dom σ ⊆ ∅.

  [x∪p]∩q⊆∅→x∉q : ∀{x p q} → (⁅ x ⁆ ∪ p) ∩ q ⊆ ∅ → x ∉ q
  [x∪p]∩q⊆∅→x∉q {x}{p}{q} xpq x∈q =
      let x∈∅ = xpq {x} (proj₂ (∈∩ _ _ _) ⟨ (p⊆p∪q _ _ (x∈⁅x⁆ x)) , x∈q ⟩) in
      ⊥-elim (∉∅ x∈∅)

So it remains to prove

vars-eqs ([ M / x ] eqs) ∩ (⁅ x ⁆ ∪ dom σ) ⊆ ∅

By the lemma vars-eqs-subst-∪ in FirstOrderTerms, we know that vars-eqs ([ M / x ] eqs) ⊆ vars M ∪ (vars-eqs eqs - ⁅ x ⁆), so we just need to show that

(vars M  ∪ (vars-eqs eqs - ⁅ x ⁆)) ∩ (⁅ x ⁆ ∪ dom σ) ⊆ ∅

If we distribute the intersection, we have

(vars M  ∩ (⁅ x ⁆ ∪ dom σ))  ∪  ((vars-eqs eqs - ⁅ x ⁆) ∩ (⁅ x ⁆ ∪ dom σ)) ⊆ ∅

and therefore need to show

(1)  vars M  ∩ (⁅ x ⁆ ∪ dom σ) ⊆ ∅
(2)  (vars-eqs eqs - ⁅ x ⁆) ∩ (⁅ x ⁆ ∪ dom σ) ⊆ ∅

We prove (1) from x ∉ M and vars M ∩ dom σ ⊆ ∅. We prove (2) from vars-eqs eqs ∩ dom σ ⊆ ∅. The following is the Agda formalization of this proof.

  eqs∩x∪σ⊆∅ : ∀{x}{M}{σ}{eqs}
     → x ∉ vars M
     → (⁅ x ⁆ ∪ vars M ∪ vars-eqs eqs) ∩ dom σ ⊆ ∅
     → vars-eqs ([ M / x ] eqs) ∩ (⁅ x ⁆ ∪ dom ([ M / x ] σ)) ⊆ ∅
  eqs∩x∪σ⊆∅ {x}{M}{σ}{eqs} x∉M eqs∩domσ⊆∅ {- {y} y∈ -}
      rewrite subst-dom {x}{M}{σ} ([x∪p]∩q⊆∅→x∉q eqs∩domσ⊆∅) =
      begin⊆
          vars-eqs ([ M / x ] eqs) ∩ (⁅ x ⁆ ∪ dom σ)
      ⊆⟨ p⊆r→q⊆s→p∩q⊆r∩s (vars-eqs-subst-∪ {eqs = eqs}{M = M}) ⊆-refl ⟩
          (vars M  ∪ (vars-eqs eqs - ⁅ x ⁆)) ∩ (⁅ x ⁆ ∪ dom σ)
      ⊆⟨ ⊆-reflexive ∪-distrib-∩ ⟩
          (vars M ∩ (⁅ x ⁆ ∪ dom σ)) ∪ ((vars-eqs eqs - ⁅ x ⁆) ∩ (⁅ x ⁆ ∪ dom σ))
      ⊆⟨ p⊆r→q⊆s→p∪q⊆r∪s G1 G2 ⟩
          ∅ ∪ ∅
      ⊆⟨ ⊆-reflexive (p∪∅≡p _) ⟩
          ∅
      ■
      where
      G1a : vars M ∩ dom σ ⊆ ∅
      G1a rewrite ∪-distrib-∩ {⁅ x ⁆}{vars M ∪ vars-eqs eqs}{dom σ}
          | ∪-distrib-∩ {vars M}{vars-eqs eqs}{dom σ} =
            proj₁ (p∪q⊆∅→p⊆∅×q⊆∅ _ _ (proj₂ (p∪q⊆∅→p⊆∅×q⊆∅ _ _ eqs∩domσ⊆∅)))
      G1 : vars M  ∩ (⁅ x ⁆ ∪ dom σ) ⊆ ∅
      G1 = begin⊆
               vars M  ∩ (⁅ x ⁆ ∪ dom σ)
           ⊆⟨ ⊆-reflexive ∪-distribˡ-∩ ⟩
               (vars M ∩ ⁅ x ⁆) ∪ (vars M ∩ dom σ)
           ⊆⟨  p⊆r→q⊆s→p∪q⊆r∪s (x∉p→p∩⁅x⁆⊆∅ _ _ x∉M) G1a ⟩
               ∅ ∪ ∅
           ⊆⟨ ⊆-reflexive (p∪∅≡p _) ⟩
               ∅
           ■
      G2a : vars-eqs eqs ∩ dom σ ⊆ ∅
      G2a rewrite ∪-distrib-∩ {⁅ x ⁆}{vars M ∪ vars-eqs eqs}{dom σ}
          | ∪-distrib-∩ {vars M}{vars-eqs eqs}{dom σ} =
            proj₂ (p∪q⊆∅→p⊆∅×q⊆∅ _ _ (proj₂ (p∪q⊆∅→p⊆∅×q⊆∅ _ _ eqs∩domσ⊆∅)))
      G2 : (vars-eqs eqs - ⁅ x ⁆) ∩ (⁅ x ⁆ ∪ dom σ) ⊆ ∅
      G2 = begin⊆
               (vars-eqs eqs - ⁅ x ⁆) ∩ (⁅ x ⁆ ∪ dom σ)
           ⊆⟨ [p-q]∩[q∪r]⊆p∩r ⟩
               vars-eqs eqs ∩ dom σ
           ⊆⟨ G2a ⟩
               ∅
           ■

When we decompose an equality between two function symbol applications, the substitution remains the same but we append the corresponding sub-terms to the list of equations. The fact that the domain of the substitution is disjoint from the variables in the new equations follows from the lemma var-eqs-append-≡ that we proved above.

  MsLseqs∩domσ⊆∅ : ∀{n}{Ms Ls : Vec Term n}{eqs}{σ}
     → (vars-vec Ms ∪ vars-vec Ls ∪ vars-eqs eqs) ∩ dom σ ⊆ ∅
     → vars-eqs (append-eqs Ms Ls eqs) ∩ dom σ ⊆ ∅
  MsLseqs∩domσ⊆∅ {n}{Ms}{Ls}{eqs}{σ} prem =
     begin⊆
         vars-eqs (append-eqs Ms Ls eqs) ∩ dom σ
     ⊆⟨ p⊆r→q⊆s→p∩q⊆r∩s (⊆-reflexive (var-eqs-append-≡ {n} Ms Ls eqs)) ⊆-refl ⟩
         (vars-vec Ms ∪ vars-vec Ls ∪ vars-eqs eqs) ∩ dom σ
     ⊆⟨ prem ⟩
         ∅
     ■

We are now ready to prove that unify-rec is sound, i.e., that the output substitution unifies the input equations and substitutions, provided that hte input substitution is idempotent and the domain of the input substitution is disjoint from the variables in the equations. The explanation of the proof follows the below Agda code.

  unify-rec-sound : ∀{eqs}{σ}{σ'}{ac}
     → IdemSubst σ
     → vars-eqs eqs ∩ dom σ ⊆ ∅
     → unify-rec eqs σ ac ≡ finished σ'
     → σ' unifies eqs × σ' unifies σ
  unify-rec-sound {[]} {σ}{σ'}{ac} Sσ eqs∩domσ⊆∅ refl = ⟨ tt , unifies-refl Sσ ⟩
  unify-rec-sound {⟨ ` x , ` y ⟩ ∷ eqs} {σ} {σ'} {acc rs} Sσ eqs∩domσ⊆∅ unify[eqs,σ]≡σ'
      with x ≟ y 
  ... | yes refl
      with unify-rec-sound {eqs}{σ}{σ'} {rs _ (measure1 {eqs}{σ'})}
              Sσ (xx-eqs∩dom⊆∅ {x}{eqs}{σ} eqs∩domσ⊆∅) unify[eqs,σ]≡σ'
  ... | ⟨ σ'eqs , σ'σ ⟩ =
        ⟨ ⟨ G1a , G1b ⟩ , G2 ⟩
      where
      G1a : subst σ' (` x) ≡ subst σ' (` x)
      G1a = refl
      G1b : σ' unifies eqs
      G1b = σ'eqs
      G2 : σ' unifies σ
      G2 = σ'σ
  unify-rec-sound {⟨ ` x , ` y ⟩ ∷ eqs} {σ} {σ'} {acc rs} Sσ eqs∩domσ⊆∅ unify[eqs,σ]≡σ'
      | no xy
      with unify-rec-sound {[ ` y / x ] eqs}{(⟨ ` x , ` y ⟩ ∷ [ ` y / x ] σ)}{σ'}
               {rs _ (measure2{eqs}{σ'} (x∉⁅y⁆ _ _ xy))}
               (insert-subst {x}{` y}{σ}{eqs} (x∉⁅y⁆ x y xy) eqs∩domσ⊆∅ Sσ)
               (eqs∩x∪σ⊆∅ {x}{` y}{σ}{eqs} (x∉⁅y⁆ x y xy) eqs∩domσ⊆∅)
               unify[eqs,σ]≡σ'
  ... | ⟨ σ'[y/x]eqs , ⟨ σ'x=σ'y , σ'[y/x]σ ⟩ ⟩ =
        ⟨ ⟨ G1a , G1b ⟩ , G2 ⟩
      where
      G1a : subst σ' (` x) ≡ subst σ' (` y)
      G1a = σ'x=σ'y
      G1b : σ' unifies eqs
      G1b = subst-reflect σ'[y/x]eqs σ'x=σ'y
      G2 : σ' unifies σ
      G2 = subst-reflect σ'[y/x]σ σ'x=σ'y
  unify-rec-sound {⟨ ` x , op ⦅ Ms ⦆ ⟩ ∷ eqs} {σ} {σ'}{acc rs} Sσ eqs∩domσ⊆∅ unify[eqs,σ]≡σ'
      with occurs? x (op ⦅ Ms ⦆)
  ... | yes x∈M
      with unify[eqs,σ]≡σ'
  ... | ()    
  unify-rec-sound {⟨ ` x , op ⦅ Ms ⦆ ⟩ ∷ eqs} {σ} {σ'}{acc rs} Sσ eqs∩domσ⊆∅ unify[eqs,σ]≡σ'
      | no x∉M 
      with unify-rec-sound {([ op ⦅ Ms ⦆ / x ] eqs)} {(⟨ ` x , op ⦅ Ms ⦆ ⟩ ∷ [ op ⦅ Ms ⦆ / x ] σ)} {σ'}
               {rs _ (measure2{eqs}{σ} x∉M)}
               (insert-subst {x}{op ⦅ Ms ⦆}{σ}{eqs} x∉M eqs∩domσ⊆∅ Sσ)
               (eqs∩x∪σ⊆∅ {x}{op ⦅ Ms ⦆}{σ}{eqs} x∉M eqs∩domσ⊆∅)
               unify[eqs,σ]≡σ'
  ... | ⟨ σ'[M/x]eqs , ⟨ σ'xM , σ'[M/x]σ ⟩ ⟩ =
      ⟨ ⟨ G1a , G1b ⟩ , G2 ⟩
      where
      G1a : subst σ' (` x) ≡ subst σ' (op ⦅ Ms ⦆)
      G1a = σ'xM
      G1b : σ' unifies eqs
      G1b = subst-reflect σ'[M/x]eqs σ'xM
      G2 : σ' unifies σ
      G2 = subst-reflect σ'[M/x]σ σ'xM
  unify-rec-sound {⟨ op ⦅ Ms ⦆ , ` x ⟩ ∷ eqs} {σ} {σ'}{acc rs} Sσ eqs∩domσ⊆∅ unify[eqs,σ]≡σ'
      with occurs? x (op ⦅ Ms ⦆)
  ... | yes x∈M
      with unify[eqs,σ]≡σ'
  ... | ()    
  unify-rec-sound {⟨ op ⦅ Ms ⦆ , ` x ⟩ ∷ eqs} {σ} {σ'}{acc rs} Sσ eqs∩domσ⊆∅ unify[eqs,σ]≡σ'
      | no x∉M
      with unify-rec-sound {([ op ⦅ Ms ⦆ / x ] eqs)} {(⟨ ` x , op ⦅ Ms ⦆ ⟩ ∷ [ op ⦅ Ms ⦆ / x ] σ)} {σ'}
               {rs _ (measure3{eqs}{σ'} x∉M)}
               ((insert-subst {x}{op ⦅ Ms ⦆}{σ}{eqs} x∉M (M∪x∪eqs {op ⦅ Ms ⦆}{x}{eqs}{σ} eqs∩domσ⊆∅) Sσ))
               (eqs∩x∪σ⊆∅ {x}{op ⦅ Ms ⦆}{σ}{eqs} x∉M (M∪x∪eqs {op ⦅ Ms ⦆}{x}{eqs}{σ} eqs∩domσ⊆∅))
               unify[eqs,σ]≡σ'
  ... | ⟨ σ'[M/x]eqs , ⟨ σ'xM , σ'[M/x]σ ⟩ ⟩ =
      ⟨ ⟨ G1a , G1b ⟩ , G2 ⟩
      where
      G1a : subst σ' (op ⦅ Ms ⦆) ≡ subst σ' (` x)
      G1a = sym σ'xM
      G1b : σ' unifies eqs
      G1b = subst-reflect σ'[M/x]eqs σ'xM
      G2 : σ' unifies σ
      G2 = subst-reflect σ'[M/x]σ σ'xM
  unify-rec-sound {⟨ op ⦅ Ms ⦆ , op' ⦅ Ls ⦆ ⟩ ∷ eqs} {σ} {σ'}{acc rs} Sσ eqs∩domσ⊆∅ unify[eqs,σ]≡σ'
      with op-eq? op op'
  ... | yes refl
      with unify-rec-sound {append-eqs Ms Ls eqs}{σ}{σ'}{rs _ (measure4{eqs}{σ'})} Sσ
               (MsLseqs∩domσ⊆∅ {Ms = Ms}{Ls = Ls}{σ = σ} eqs∩domσ⊆∅) unify[eqs,σ]≡σ'
  ... | ⟨ σ'Ms,Ls,eqs , σ'σ ⟩
      with subst-vec-reflect {Ms = Ms}{Ls} σ'Ms,Ls,eqs
  ... | ⟨ σ'Ms=σ'Ls , σ'eqs ⟩ =
      ⟨ ⟨ G1a  , G1b ⟩ , G2 ⟩
      where
      G1a : (op ⦅ subst-vec σ' Ms ⦆) ≡ (op ⦅ subst-vec σ' Ls ⦆)
      G1a = cong (λ □ → op ⦅ □ ⦆) σ'Ms=σ'Ls
      G1b : σ' unifies eqs
      G1b = σ'eqs
      G2 : σ' unifies σ
      G2 = σ'σ
  unify-rec-sound {⟨ op ⦅ Ms ⦆ , op' ⦅ Ls ⦆ ⟩ ∷ eqs} {σ} {σ'}{acc rs} Sσ eqs∩domσ⊆∅ unify[eqs,σ]≡σ'
      | no neq
      with unify[eqs,σ]≡σ'
  ... | ()    

We use induction on the same measure that was used for proving the termination of unify-rec. We proceed by cases on the equations eqs.

  • If there are no more equations, then we trivially have σ unifies [] and we have σ unifies σ because the unifies relation is reflexive (Lemma unifies-refl).

  • If there are some equations to process, we proceed by cases on the first one.

    • Case (x ≐ x) ∷ eqs. We need to show that

        (1a) subst σ' x ≡ subst σ' x
        (1b) σ' unifies eqs
        (2) σ' unifies σ
      

      (1a) is proved by refl. We invoke the induction hypothesis, using lemmas measure1 and xx-eqs∩dom⊆∅ to satify its premises, to obtain (1b) and (2).

    • Case (x ≐ y) ∷ eqs and x ≢ y. We need to show that

        (1a) subst σ' x ≡ subst σ' y
        (1b) σ' unifies eqs
        (2) σ' unifies σ
      

      We invoke the induction hypothesis, using lemmas measure2, insert-subst, and eqs∩x∪σ⊆∅ to satisfy its premises, to obtain

        (3) σ' unifies ([ y / x ] eqs)
        (4a) subst σ' x ≡ subst σ' y
        (4b) σ' unifies [ y / x ] σ
      

      So (1a) is satisfied by (4a). We prove (1b) by lemma subst-reflect, using (3) and (4a). We also prove (2) by lemma subst-reflect, using (4b) and (4a).

    • Cases (x ≐ M) ∷ eqs and (M ≐ x) ∷ eqs where M ≡ op ⦅ Ms ⦆. If x ∈ vars M, then unify-rec eqs σ ac ≡ no-solution, but that contradicts the premise that unify-rec eqs σ ac ≡ finished σ'. So x ∉ vars M. The proofs proceeds similarly to the case for x ≐ y. We need to show that

        (1a) subst σ' x ≡ subst σ' M
        (1b) σ' unifies eqs
        (2) σ' unifies σ
      

      We invoke the induction hypothesis, using lemmas measure2, insert-subst, and eqs∩x∪σ⊆∅ to satisfy its premises, to obtain

        (3) σ' unifies ([ M / x ] eqs)
        (4a) subst σ' x ≡ subst σ' M
        (4b) σ' unifies [ M / x ] σ
      

      So (1a) is satisfied by (4a). We prove (1b) by lemma subst-reflect, using (3) and (4a). We also prove (2) by lemma subst-reflect, using (4b) and (4a).

    • Case (op ⦅ Ms ⦆ ≐ op' ⦅ Ls ⦆). If op ≢ op', then we have unify-rec eqs σ ac ≡ no-solution, but that contradicts the premise that unify-rec eqs σ ac ≡ finished σ'. So op ≡ op'.

      We need to show that

        (1a) subst σ' (op ⦅ Ms ⦆) ≡ subst σ' (op ⦅ Ls ⦆)
        (1b) σ' unifies eqs
        (2) σ' unifies σ
      

      We invoke the induction hypothesis, using lemmas measure4 and MsLseqs∩domσ⊆∅ to satisfy its premises, to obtain

        (3) σ' unifies append-eqs Ms Ls eqs
        (4) σ' unifies σ
      

      So (2) is satisfied by (4). We apply lemma subst-vec-reflect to (3) to obtain (1a) and (1b).

The soundness theorem follows directly from unify-rec-sound.

unify-sound : ∀ eqs σ
   → unify eqs ≡ finished σ
   → σ unifies eqs
unify-sound eqs σ unify-eqs-σ =
    proj₁ (unify-rec-sound {eqs}{[]}{σ}{M} empty G unify-eqs-σ)
    where
    M : Acc _<₃_ (measure eqs [])
    M = <₃-wellFounded (measure eqs [])
    G : vars-eqs eqs ∩ ∅ ⊆ ∅
    G rewrite p∩∅≡∅ (vars-eqs eqs) = λ z → z

We turn to the proof of the completeness theorem. The proof is quite similar to the soundness theorem. We first prove a completeness lemma for unify-rec and the completeness theorem is a corollary. For unify-rec, we shall prove that if unify-rec eqs σ ac ≡ no-solution then there is no substitution θ that unifies eqs and σ. This proof is quite similar to the proof of the soundness lemma for unify-rec. We again use induction on the same measure that was used for proving the termination of unify-rec and we proceed by cases on the equations eqs. The proofs differ primarily in two respects.

  1. In the cases where unify-rec returns no-solution we have to show that no solution exists. In particular, if the occurs-check fails, then we use lemma occurs-no-soln. If the operators are not equal (op ⦅ Ms ⦆ ≐ op' ⦅ Ls ⦆ and op ≢ op'), then we immediately have a contradction.

  2. Instead of using the lemma that says substitution reflects unifiers, we use the lemma that says substitution preserves unifiers.

private
  unify-rec-complete : ∀{eqs}{σ}{ac}
     → IdemSubst σ
     → vars-eqs eqs ∩ dom σ ⊆ ∅
     → unify-rec eqs σ ac ≡ no-solution
     → ∀ θ → ¬ (θ unifies eqs × θ unifies σ)
  unify-rec-complete {⟨ ` x , ` y ⟩ ∷ eqs} {σ} {acc rs} Sσ eqs∩domσ⊆∅ unify[eqs,σ]≡no θ ⟨ ⟨ θxy , θeqs ⟩ , θσ ⟩
      with x ≟ y
  ... | yes refl =
      unify-rec-complete {eqs}{σ} {rs _ (measure1 {eqs}{θ})}
          Sσ (xx-eqs∩dom⊆∅ {x}{eqs}{σ} eqs∩domσ⊆∅) unify[eqs,σ]≡no θ ⟨ θeqs , θσ ⟩ 
  ... | no xy =
      let eqs' = [ ` y / x ] eqs in
      let σ' = ⟨ ` x , ` y ⟩ ∷ [ ` y / x ] σ in
      unify-rec-complete {eqs'}{σ'}{rs _ (measure2{eqs}{θ} (x∉⁅y⁆ _ _ xy))}
          (insert-subst {x}{` y}{σ}{eqs} (x∉⁅y⁆ x y xy) eqs∩domσ⊆∅ Sσ)
          (eqs∩x∪σ⊆∅ {x}{` y}{σ}{eqs} (x∉⁅y⁆ x y xy) eqs∩domσ⊆∅)
          unify[eqs,σ]≡no θ ⟨ subst-pres θxy θeqs , ⟨ θxy , (subst-pres θxy θσ) ⟩ ⟩
  unify-rec-complete {⟨ ` x , op ⦅ Ms ⦆ ⟩ ∷ eqs} {σ} {acc rs} Sσ eqs∩domσ⊆∅ unify[eqs,σ]≡no θ ⟨ ⟨ θxM , θeqs ⟩ , θσ ⟩
      with occurs? x (op ⦅ Ms ⦆)
  ... | yes x∈M = occurs-no-soln {M = op ⦅ Ms ⦆} x∈M tt θxM
  ... | no x∉M =
      let eqs' = [ op ⦅ Ms ⦆ / x ] eqs in
      let σ' = ⟨ ` x , op ⦅ Ms ⦆ ⟩ ∷ [ op ⦅ Ms ⦆ / x ] σ in
      unify-rec-complete {eqs'}{σ'}{rs _ (measure2{eqs}{θ} x∉M)}
          (insert-subst {x}{op ⦅ Ms ⦆}{σ}{eqs} x∉M eqs∩domσ⊆∅ Sσ)
          (eqs∩x∪σ⊆∅ {x}{op ⦅ Ms ⦆}{σ}{eqs} x∉M eqs∩domσ⊆∅)
          unify[eqs,σ]≡no θ ⟨ subst-pres θxM θeqs , ⟨ θxM , (subst-pres θxM θσ) ⟩ ⟩
  unify-rec-complete {⟨ op ⦅ Ms ⦆ , ` x ⟩ ∷ eqs} {σ} {acc rs} Sσ eqs∩domσ⊆∅ unify[eqs,σ]≡no θ ⟨ ⟨ θMx , θeqs ⟩ , θσ ⟩
      with occurs? x (op ⦅ Ms ⦆)
  ... | yes x∈M = occurs-no-soln {M = op ⦅ Ms ⦆} x∈M tt (sym θMx)
  ... | no x∉M =
      let eqs' = [ op ⦅ Ms ⦆ / x ] eqs in
      let σ' = ⟨ ` x , op ⦅ Ms ⦆ ⟩ ∷ [ op ⦅ Ms ⦆ / x ] σ in
      unify-rec-complete {eqs'}{σ'}{rs _ (measure3{eqs}{θ} x∉M)}
          (insert-subst {x}{op ⦅ Ms ⦆}{σ}{eqs} x∉M (M∪x∪eqs {op ⦅ Ms ⦆}{x}{eqs}{σ} eqs∩domσ⊆∅) Sσ)
          (eqs∩x∪σ⊆∅ {x}{op ⦅ Ms ⦆}{σ}{eqs} x∉M (M∪x∪eqs {op ⦅ Ms ⦆}{x}{eqs}{σ} eqs∩domσ⊆∅))
          unify[eqs,σ]≡no θ ⟨ subst-pres (sym θMx) θeqs , ⟨ (sym θMx) , (subst-pres (sym θMx) θσ) ⟩ ⟩
  unify-rec-complete {⟨ op ⦅ Ms ⦆ , op' ⦅ Ls ⦆ ⟩ ∷ eqs} {σ} {acc rs} Sσ eqs∩domσ⊆∅ unify[eqs,σ]≡no θ ⟨ ⟨ θML , θeqs ⟩ , θσ ⟩
      with op-eq? op op'
  ... | yes refl =    
      unify-rec-complete {append-eqs Ms Ls eqs}{σ}{rs _ (measure4{eqs}{θ})} Sσ
          (MsLseqs∩domσ⊆∅ {Ms = Ms}{Ls = Ls}{σ = σ} eqs∩domσ⊆∅) unify[eqs,σ]≡no θ
          ⟨ append-pres {Ms = Ms}{Ls = Ls} θeqs (Ms≡-inversion θML) , θσ ⟩
  unify-rec-complete {⟨ op ⦅ Ms ⦆ , op' ⦅ Ls ⦆ ⟩ ∷ eqs} {σ} {acc rs} Sσ eqs∩domσ⊆∅ unify[eqs,σ]≡no θ ⟨ ⟨ θML , θeqs ⟩ , θσ ⟩
      | no neq = neq (op≡-inversion θML)

The completeness theorem for unify follows directly from the lemma unify-rec-complete.

unify-complete :  ∀ eqs
   → unify eqs ≡ no-solution
   → ∀ θ → ¬ θ unifies eqs
unify-complete eqs unify[eqs]=no θ θeqs =
    unify-rec-complete {eqs}{[]}{M} empty G unify[eqs]=no θ ⟨ θeqs , tt ⟩
    where
    M : Acc _<₃_ (measure eqs [])
    M = (<₃-wellFounded (measure eqs []))
    G : vars-eqs eqs ∩ ∅ ⊆ ∅
    G rewrite p∩∅≡∅ (vars-eqs eqs) = λ z → z