-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcalculate_AUC_light_all.py
322 lines (259 loc) · 15.3 KB
/
calculate_AUC_light_all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import click
import torch
import logging
import random
import numpy as np
import time
from datasets.main import load_dataset
from optim.prop_trainer import *
import matplotlib.pyplot as plt
from PIL import Image
import os
from sklearn.mixture import GaussianMixture
from sklearn.preprocessing import MinMaxScaler
from sklearn import metrics
from sklearn.metrics import roc_auc_score, average_precision_score
from utils import *
import argparse
# -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
# # # # # # # # # # #
# START EXPERIMENTS
# # # # # # # # # # #
parser = argparse.ArgumentParser(description='ODIM Experiment')
# arguments for optimization
parser.add_argument('--use_cuda', type=bool, default=True)
parser.add_argument('--gpu_num', type=int, default=0)
parser.add_argument('--dataset_name', type=str, default='mnist')
parser.add_argument('--dataset_name_option', type=str, default='adbench_all', choices=[None, 'all', 'adbench', 'adbench_all'])
parser.add_argument('--batch_size', type=int, default=64)
parser.add_argument('--filter_net_name', type=str, default=None)
parser.add_argument('--data_path', type=str, default=None)
parser.add_argument('--data_root', type=str, default='../data')
# python calculate_AUC_light_all.py --dataset_name_option "adbench" --gpu_num 0 --batch_size 512
args = parser.parse_args()
# args = parser.parse_args([])
# -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
if __name__ == "__main__":
# -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
# parameter setting
# -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
use_cuda = args.use_cuda
gpu_num = args.gpu_num
batch_size = args.batch_size
ratio_known_normal = 0.0
ratio_known_outlier = 0.0
n_known_outlier_classes = 0
dataset_name_list, data_path_list, train_option_list, filter_net_name_list, \
ratio_pollution_list, normal_class_list_list, patience_thres_list = gen_hyperparams(args.data_root,
args.dataset_name,
args.dataset_name_option)
for dataset_idx in range(len(dataset_name_list)):
dataset_name = dataset_name_list[dataset_idx]
data_path = data_path_list[dataset_idx]
train_option = train_option_list[dataset_idx]
filter_net_name = filter_net_name_list[dataset_idx]
ratio_pollution = ratio_pollution_list[dataset_idx]
normal_class_list = normal_class_list_list[dataset_idx]
patience_thres = patience_thres_list[dataset_idx]
data_seed_list = [110,120,130,140,150]
start_model_seed = 1234
n_ens = 10
normal_class_idx = 0
for normal_class_idx in range(len(normal_class_list)):
normal_class = normal_class_list[normal_class_idx]
known_outlier_class = 0
# Default device to 'cpu' if cuda is not available
if not torch.cuda.is_available():
device = 'cpu'
torch.cuda.set_device(gpu_num)
print('Current number of the GPU is %d'%torch.cuda.current_device())
seed_idx = 0
nu = 0.1
num_threads = 0
n_jobs_dataloader = 0
row_name_list = []
for seed_idx in range(len(data_seed_list)):
row_name = f'{dataset_name}_Class{normal_class}_simulation{seed_idx+1}'
row_name_list.append(row_name)
row_name = f'{dataset_name}_Average'
row_name_list.append(row_name)
row_name = f'{dataset_name}_Std'
row_name_list.append(row_name)
train_auc_list = []
train_ap_list = []
test_auc_list = []
test_ap_list = []
seed_idx = 0
for seed_idx in range(len(data_seed_list)):
seed = data_seed_list[seed_idx]
save_metric_dir = f'Results_check'
os.makedirs(save_metric_dir, exist_ok=True)
save_dir = os.path.join(f'Results_check/{dataset_name}/ODIM_light{batch_size}_{filter_net_name}',f'log{seed}')
os.makedirs(save_dir, exist_ok=True)
save_score_dir = os.path.join(f'Results_check/{dataset_name}/ODIM_light{batch_size}_{filter_net_name}',f'score{seed}')
os.makedirs(save_score_dir, exist_ok=True)
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger()
logger.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
log_file = save_dir + '/log_'+dataset_name+'_trainOption'+ train_option + '_normal' + str(normal_class) +'.txt'
file_handler = logging.FileHandler(log_file)
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
logger.info('-----------------------------------------------------------------')
logger.info('-----------------------------------------------------------------')
# Print paths
logger.info('Log file is %s' % log_file)
logger.info('Data path is %s' % data_path)
# Print experimental setup
logger.info('Dataset: %s' % dataset_name)
logger.info('Normal class: %s' % normal_class)
logger.info('Ratio of labeled normal train samples: %.2f' % ratio_known_normal)
logger.info('Ratio of labeled anomalous samples: %.2f' % ratio_known_outlier)
logger.info('Pollution ratio of unlabeled train data: %.2f' % ratio_pollution)
if n_known_outlier_classes == 1:
logger.info('Known anomaly class: %d' % known_outlier_class)
else:
logger.info('Number of known anomaly classes: %d' % n_known_outlier_classes)
logger.info('Network: %s' % filter_net_name)
# Print model configuration
logger.info('nu-parameter: %.2f' % nu)
# Set seed
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
# Load data
dataset = load_dataset(dataset_name, data_path, normal_class, known_outlier_class, n_known_outlier_classes,
ratio_known_normal, ratio_known_outlier, ratio_pollution,
random_state=np.random.RandomState(seed))
# Log random sample of known anomaly classes if more than 1 class
if n_known_outlier_classes > 1:
logger.info('Known anomaly classes: %s' % (dataset.known_outlier_classes,))
# Train Filter model
if 'all' in dataset_name:
train_loader = dataset.loaders(batch_size=batch_size, num_workers=n_jobs_dataloader)
else:
train_loader, test_loader = dataset.loaders(batch_size=batch_size, num_workers=n_jobs_dataloader)
test_ys = []
test_idxs = []
for (_, outputs, idxs) in test_loader:
test_ys.append(outputs.data.numpy())
test_idxs.append(idxs.data.numpy())
test_ys = np.hstack(test_ys)
test_idxs = np.hstack(test_idxs)
test_idxs_ys = pd.DataFrame({'idx' : test_idxs,'y' : test_ys})
## extract train ys and idxs
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
train_ys = []
train_idxs = []
for (_, outputs, idxs) in train_loader:
train_ys.append(outputs.data.numpy())
train_idxs.append(idxs.data.numpy())
train_ys = np.hstack(train_ys)
train_idxs = np.hstack(train_idxs)
train_idxs_ys = pd.DataFrame({'idx' : train_idxs,'y' : train_ys})
logger.info(f'Sample Size : {len(train_ys)}')
ens_train_me_losses = 0
ens_st_train_me_losses = 0
## patience index
train_n = train_ys.shape[0]
check_iter = np.min(np.array([10, (train_n // batch_size)]))
patience = np.ceil(patience_thres / check_iter).astype('int')
loss_column = ['idx','ens_value','ens_st_value','y']
for model_iter in range(n_ens):
model_seed = start_model_seed+(model_iter*10)
logger.info('Set model seed to %d.' % (model_seed))
## step 1
if 'all' in dataset_name:
train_idxs_losses, _, running_time = odim_light(filter_net_name, train_loader, train_loader, check_iter, patience, model_seed,seed, logger, train_option)
else:
train_idxs_losses, test_idxs_losses, running_time = odim_light(filter_net_name, train_loader, test_loader, check_iter, patience, model_seed,seed, logger, train_option)
train_me_losses = (train_idxs_losses.to_numpy())[:,1]
st_train_me_losses = (train_me_losses - train_me_losses.mean())/train_me_losses.std()
train_idxs_losses['st_loss'] = st_train_me_losses
add_label_idx_losses = pd.merge(train_idxs_losses, train_idxs_ys, on ='idx')
fpr, tpr, thresholds = metrics.roc_curve(np.array(add_label_idx_losses['y']), np.array(add_label_idx_losses['loss']), pos_label=1)
roc_auc = metrics.auc(fpr, tpr)
logger.info('\n...Train_AUC value- VAE: %0.4f' %(roc_auc))
if model_iter == 0:
ens_loss = add_label_idx_losses
ens_loss.columns = loss_column
else:
merge_data = pd.merge(ens_loss, train_idxs_losses, on = 'idx')
merge_data['ens_value'] = merge_data['ens_value'] + merge_data['loss']
merge_data['ens_st_value'] = merge_data['ens_st_value'] + merge_data['st_loss']
ens_loss = merge_data[loss_column]
train_auc = roc_auc_score(np.array(ens_loss['y']), np.array(ens_loss['ens_value']))
train_ap = average_precision_score(np.array(ens_loss['y']), np.array(ens_loss['ens_value']))
logger.info('\n ...Train_AUC value- Ens VAE: %0.4f' % train_auc)
logger.info('\n ...Train_PRAUC value- Ens VAE: %0.4f' % train_ap)
if 'all' not in dataset_name:
test_me_losses = (test_idxs_losses.to_numpy())[:,1]
st_test_me_losses = (test_me_losses - test_me_losses.mean())/test_me_losses.std()
test_idxs_losses['st_loss'] = st_test_me_losses
add_label_idx_test_losses = pd.merge(test_idxs_losses, test_idxs_ys, on ='idx')
fpr, tpr, thresholds = metrics.roc_curve(np.array(add_label_idx_test_losses['y']), np.array(add_label_idx_test_losses['loss']), pos_label=1)
roc_auc = metrics.auc(fpr, tpr)
logger.info('\n...Test_AUC value- VAE: %0.4f' %(roc_auc))
if model_iter == 0:
test_ens_loss = add_label_idx_test_losses
test_ens_loss.columns = loss_column
else:
test_merge_data = pd.merge(test_ens_loss, test_idxs_losses, on = 'idx')
test_merge_data['ens_value'] = test_merge_data['ens_value'] + test_merge_data['loss']
test_merge_data['ens_st_value'] = test_merge_data['ens_st_value'] + test_merge_data['st_loss']
test_ens_loss = test_merge_data[loss_column]
test_auc = roc_auc_score(np.array(test_ens_loss['y']), np.array(test_ens_loss['ens_value']))
test_ap = average_precision_score(np.array(test_ens_loss['y']), np.array(test_ens_loss['ens_value']))
logger.info('\n ...Test_AUC value- Ens VAE: %0.4f' %(test_auc))
logger.info('\n ...Test_PRAUC value- Ens VAE: %0.4f' %(test_ap))
logger.info('\n ...Final Train_AUC value of Ens VAE: %0.4f' %(train_auc))
logger.info('\n ...Final Train_PRAUC value of Ens VAE: %0.4f' %(train_ap))
train_auc_list.append(train_auc)
train_ap_list.append(train_ap)
ens_loss.to_csv(os.path.join(save_score_dir,'score_data.csv'),index=False)
if 'all' not in dataset_name:
logger.info('\n ...Final Test_AUC value of Ens VAE: %0.4f' %(test_auc))
logger.info('\n ...Final Test_PRAUC value of Ens VAE: %0.4f' %(test_ap))
logger.info('Running_time of InlierMem : %.4f' % (running_time))
test_auc_list.append(test_auc)
test_ap_list.append(test_ap)
test_ens_loss.to_csv(os.path.join(save_score_dir,'test_score_data.csv'),index=False)
logger.removeHandler(file_handler)
train_auc_list.append(np.mean(train_auc_list))
train_auc_list.append(np.std(train_auc_list))
train_ap_list.append(np.mean(train_ap_list))
train_ap_list.append(np.std(train_ap_list))
class_train_df = pd.DataFrame({
'row_names' : row_name_list,
'train_auc' : train_auc_list,
'train_ap' : train_ap_list
})
class_train_df.set_index(keys = 'row_names', inplace = True)
try:
train_df = pd.concat([train_df, class_train_df], axis = 0)
except:
train_df = class_train_df
train_df.to_csv(os.path.join(save_metric_dir,f'ODIM_light_{args.dataset_name_option}_train_result.csv'))
if 'all' not in dataset_name:
test_auc_list.append(np.mean(test_auc_list))
test_auc_list.append(np.std(test_auc_list))
test_ap_list.append(np.mean(test_ap_list))
test_ap_list.append(np.std(test_ap_list))
class_test_df = pd.DataFrame({
'row_names' : row_name_list,
'test_auc' : test_auc_list,
'test_ap' : test_ap_list
})
class_test_df.set_index(keys = 'row_names', inplace = True)
try:
test_df = pd.concat([test_df, class_test_df], axis = 0)
except:
test_df = class_test_df
test_df.to_csv(os.path.join(save_metric_dir,f'ODIM_light_{args.dataset_name_option}_test_result.csv'))