forked from einride/can-go
-
Notifications
You must be signed in to change notification settings - Fork 0
/
payload.go
332 lines (308 loc) · 12.9 KB
/
payload.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
package can
import (
"encoding/hex"
"math/big"
)
// Data holds the data in a CAN frame.
//
// Layout
//
// Individual bits in the data are numbered according to the following scheme:
//
// BIT
// NUMBER
// +------+------+------+------+------+------+------+------+
// | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
// BYTE +------+------+------+------+------+------+------+------+
// NUMBER
// +-----+ +------+------+------+------+------+------+------+------+
// | 0 | | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
// +-----+ +------+------+------+------+------+------+------+------+
// | 1 | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 |
// +-----+ +------+------+------+------+------+------+------+------+
// | 2 | | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
// +-----+ +------+------+------+------+------+------+------+------+
// | 3 | | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 |
// +-----+ +------+------+------+------+------+------+------+------+
// | 4 | | 39 | 38 | 37 | 36 | 35 | 34 | 33 | 32 |
// +-----+ +------+------+------+------+------+------+------+------+
// | 5 | | 47 | 46 | 45 | 44 | 43 | 42 | 41 | 40 |
// +-----+ +------+------+------+------+------+------+------+------+
// | 6 | | 55 | 54 | 53 | 52 | 51 | 50 | 49 | 48 |
// +-----+ +------+------+------+------+------+------+------+------+
// | 7 | | 63 | 62 | 61 | 60 | 59 | 58 | 57 | 56 |
// +-----+ +------+------+------+------+------+------+------+------+
//
// Bit ranges can be manipulated using little-endian and big-endian bit ordering.
//
// Little-endian bit ranges
//
// Example range of length 32 starting at bit 29:
//
// BIT
// NUMBER
// +------+------+------+------+------+------+------+------+
// | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
// BYTE +------+------+------+------+------+------+------+------+
// NUMBER
// +-----+ +------+------+------+------+------+------+------+------+
// | 0 | | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
// +-----+ +------+------+------+------+------+------+------+------+
// | 1 | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 |
// +-----+ +------+------+------+------+------+------+------+------+
// | 2 | | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
// +-----+ +------+------+------+------+------+------+------+------+
// | 3 | | <-------------LSb | 28 | 27 | 26 | 25 | 24 |
// +-----+ +------+------+------+------+------+------+------+------+
// | 4 | | <-------------------------------------------------- |
// +-----+ +------+------+------+------+------+------+------+------+
// | 5 | | <-------------------------------------------------- |
// +-----+ +------+------+------+------+------+------+------+------+
// | 6 | | <-------------------------------------------------- |
// +-----+ +------+------+------+------+------+------+------+------+
// | 7 | | 63 | 62 | 61 | <-MSb--------------------------- |
// +-----+ +------+------+------+------+------+------+------+------+
//
// Big-endian bit ranges
//
// Example range of length 32 starting at bit 29:
//
// BIT
// NUMBER
// +------+------+------+------+------+------+------+------+
// | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
// BYTE +------+------+------+------+------+------+------+------+
// NUMBER
// +-----+ +------+------+------+------+------+------+------+------+
// | 0 | | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
// +-----+ +------+------+------+------+------+------+------+------+
// | 1 | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 |
// +-----+ +------+------+------+------+------+------+------+------+
// | 2 | | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
// +-----+ +------+------+------+------+------+------+------+------+
// | 3 | | 31 | 30 | <-MSb--------------------------------- |
// +-----+ +------+------+------+------+------+------+------+------+
// | 4 | | <-------------------------------------------------- |
// +-----+ +------+------+------+------+------+------+------+------+
// | 5 | | <-------------------------------------------------- |
// +-----+ +------+------+------+------+------+------+------+------+
// | 6 | | <-------------------------------------------------- |
// +-----+ +------+------+------+------+------+------+------+------+
// | 7 | | <------LSb | 61 | 60 | 59 | 58 | 57 | 56 |
// +-----+ +------+------+------+------+------+------+------+------+
type Payload struct {
// Binary data
Data []byte
// Packed little endian
PackedLittleEndian *big.Int
// Packed big endian
PackedBigEndian *big.Int
}
// Hex returns the hexadecimal representation of the byte array in a Payload.
func (p *Payload) Hex() string {
h := hex.EncodeToString(p.Data)
return h
}
// PayloadFromHex generates a Payload from a hexadecimal string.
func PayloadFromHex(hexString string) (Payload, error) {
b, err := hex.DecodeString(hexString)
var p Payload
if err != nil {
return p, err
}
p = Payload{Data: b}
return p, nil
}
// UnsignedBitsLittleEndian returns the little-endian bit range [start, start+length) as an unsigned value.
func (p *Payload) UnsignedBitsLittleEndian(start, length uint16) uint64 {
// pack bits into one continuous value
packed := p.PackLittleEndian()
// lsb index in the packed value is the start bit
lsbIndex := uint(start)
// shift away lower bits
shifted := packed.Rsh(packed, lsbIndex)
// mask away higher bits
masked := shifted.And(shifted, big.NewInt((1<<length)-1))
// done
return masked.Uint64()
}
// UnsignedBitsBigEndian returns the big-endian bit range [start, start+length) as an unsigned value.
func (p *Payload) UnsignedBitsBigEndian(start, length uint16) uint64 {
// pack bits into one continuous value
packed := p.PackBigEndian()
// calculate msb index in the packed value
msbIndex := p.invertEndian(start)
// calculate lsb index in the packed value
lsbIndex := uint(msbIndex - length + 1)
// shift away lower bits
shifted := packed.Rsh(packed, lsbIndex)
// mask away higher bits
masked := shifted.And(shifted, big.NewInt((1<<length)-1))
// done
return masked.Uint64()
}
// SignedBitsLittleEndian returns little-endian bit range [start, start+length) as a signed value.
func (p *Payload) SignedBitsLittleEndian(start, length uint16) int64 {
unsigned := p.UnsignedBitsLittleEndian(start, length)
return AsSigned(unsigned, length)
}
// SignedBitsBigEndian returns little-endian bit range [start, start+length) as a signed value.
func (p *Payload) SignedBitsBigEndian(start, length uint16) int64 {
unsigned := p.UnsignedBitsBigEndian(start, length)
return AsSigned(unsigned, length)
}
// TODO: Implement SetUnsignedBitsLittleEndian for Payload.
// SetUnsignedBitsLittleEndian sets the little-endian bit range [start, start+length) to the provided unsigned value.
// func (d *Data) SetUnsignedBitsLittleEndian(start, length uint8, value uint64) {
// // pack bits into one continuous value
// packed := d.PackLittleEndian()
// // lsb index in the packed value is the start bit
// lsbIndex := start
// // calculate bit mask for zeroing the bit range to set
// unsetMask := ^uint64(((1 << length) - 1) << lsbIndex)
// // calculate bit mask for setting the new value
// setMask := value << lsbIndex
// // calculate the new packed value
// newPacked := packed&unsetMask | setMask
// // unpack the new packed value into the data
// d.UnpackLittleEndian(newPacked)
// }
// TODO: Implement SetUnsignedBitsBigEndian for Payload.
// SetUnsignedBitsBigEndian sets the big-endian bit range [start, start+length) to the provided unsigned value.
// func (d *Data) SetUnsignedBitsBigEndian(start, length uint8, value uint64) {
// // pack bits into one continuous value
// packed := d.PackBigEndian()
// // calculate msb index in the packed value
// msbIndex := invertEndian(start)
// // calculate lsb index in the packed value
// lsbIndex := msbIndex - length + 1
// // calculate bit mask for zeroing the bit range to set
// unsetMask := ^uint64(((1 << length) - 1) << lsbIndex)
// // calculate bit mask for setting the new value
// setMask := value << lsbIndex
// // calculate the new packed value
// newPacked := packed&unsetMask | setMask
// // unpack the new packed value into the data
// d.UnpackBigEndian(newPacked)
// }
// TODO: Implement SetSignedBitsLittleEndian for Payload.
// SetSignedBitsLittleEndian sets the little-endian bit range [start, start+length) to the provided signed value.
// func (d *Data) SetSignedBitsLittleEndian(start, length uint8, value int64) {
// d.SetUnsignedBitsLittleEndian(start, length, reinterpret.AsUnsigned(value, length))
// }
// TODO: Implement SetSignedBitsBigEndian for Payload.
// SetSignedBitsBigEndian sets the big-endian bit range [start, start+length) to the provided signed value.
// func (d *Data) SetSignedBitsBigEndian(start, length uint8, value int64) {
// d.SetUnsignedBitsBigEndian(start, length, reinterpret.AsUnsigned(value, length))
// }
// Bit returns the value of the i:th bit in the data as a bool.
func (p *Payload) Bit(i uint16) bool {
if int(i) > 8*len(p.Data)-1 {
return false
}
// calculate which byte the bit belongs to
byteIndex := i / 8
// calculate bit mask for extracting the bit
bitMask := uint8(1 << (i % 8))
// mocks the bit
bit := p.Data[byteIndex]&bitMask > 0
// done
return bit
}
// SetBit sets the value of the i:th bit in the data.
func (p *Payload) SetBit(i uint16, value bool) {
if int(i) > 8*len(p.Data)-1 {
return
}
byteIndex := i / 8
bitIndex := i % 8
if value {
p.Data[byteIndex] |= uint8(1 << bitIndex)
} else {
p.Data[byteIndex] &= ^uint8(1 << bitIndex)
}
}
// PackLittleEndian packs the byte array into a continuous little endian big.Int.
func (p *Payload) PackLittleEndian() *big.Int {
if p.PackedLittleEndian == nil {
packed := new(big.Int).SetBytes(reverse(p.Data))
p.PackedLittleEndian = packed
}
return new(big.Int).Set(p.PackedLittleEndian)
}
// Reverse byte array for little endian signals.
func reverse(data []byte) []byte {
reversedArray := make([]byte, 0, len(data))
for i := len(data) - 1; i >= 0; i-- {
reversedArray = append(reversedArray, data[i])
}
return reversedArray
}
// PackBigEndian packs the byte array into a continuous big endian big.Int.
func (p *Payload) PackBigEndian() *big.Int {
if p.PackedBigEndian == nil {
packed := new(big.Int).SetBytes(p.Data)
p.PackedBigEndian = packed
}
return new(big.Int).Set(p.PackedBigEndian)
}
// TODO: Implement UnpackLittleEndian for Payload.
// UnpackLittleEndian sets the value of d.Bytes by unpacking the provided value as sequential little-endian bits.
// func (d *Data) UnpackLittleEndian(packed uint64) {
// d[0] = uint8(packed >> (0 * 8))
// d[1] = uint8(packed >> (1 * 8))
// d[2] = uint8(packed >> (2 * 8))
// d[3] = uint8(packed >> (3 * 8))
// d[4] = uint8(packed >> (4 * 8))
// d[5] = uint8(packed >> (5 * 8))
// d[6] = uint8(packed >> (6 * 8))
// d[7] = uint8(packed >> (7 * 8))
// }
// TODO: Implement UnpackBigEndian for Payload.
// UnpackBigEndian sets the value of d.Bytes by unpacking the provided value as sequential big-endian bits.
// func (d *Data) UnpackBigEndian(packed uint64) {
// d[0] = uint8(packed >> (7 * 8))
// d[1] = uint8(packed >> (6 * 8))
// d[2] = uint8(packed >> (5 * 8))
// d[3] = uint8(packed >> (4 * 8))
// d[4] = uint8(packed >> (3 * 8))
// d[5] = uint8(packed >> (2 * 8))
// d[6] = uint8(packed >> (1 * 8))
// d[7] = uint8(packed >> (0 * 8))
// }
// invertEndian converts from big-endian to little-endian bit indexing and vice versa.
func (p *Payload) invertEndian(i uint16) uint16 {
row := i / 8
col := i % 8
oppositeRow := uint16(len(p.Data)) - row - 1
bitIndex := (oppositeRow * 8) + col
return bitIndex
}
// AsSigned reinterprets the provided unsigned value as a signed value.
func AsSigned(unsigned uint64, bits uint16) int64 {
switch bits {
case 8:
return int64(int8(uint8(unsigned)))
case 16:
return int64(int16(uint16(unsigned)))
case 32:
return int64(int32(uint32(unsigned)))
case 64:
return int64(unsigned)
default:
// calculate bit mask for sign bit
signBitMask := uint64(1 << (bits - 1))
// check if sign bit is set
isNegative := unsigned&signBitMask > 0
if !isNegative {
// sign bit not set means we can reinterpret the value as-is
return int64(unsigned)
}
// calculate bit mask for extracting value bits (all bits except the sign bit)
valueBitMask := signBitMask - 1
// calculate two's complement of the value bits
value := ((^unsigned) & valueBitMask) + 1
// result is the negative value of the two's complement
return -1 * int64(value)
}
}