-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun-wann-classification.py
249 lines (209 loc) · 12.4 KB
/
run-wann-classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
#!/usr/bin/env python3
"""
Evolve a weight-agnostic network on a classification dataset.
"""
import numpy as np
import joblib
import time
import logging
import copy
import os
import pickle
import torch
from networks import WeightAgnosticNetwork
from evolution import reproduce_tournament, rank_by_dominance
from datasets import load_preprocessed_dataset
import utils
# Set up parameters and output dir.
train_weight_values = [-2, -1, -0.5, 0.5, 1, 2]
params = utils.load_params(mode='wann') # based on terminal input
params['script'] = 'run-wann-classification.py'
writer, out_dir = utils.init_output(params)
# Load dataset.
train_images, train_labels, test_images, test_labels = load_preprocessed_dataset(
params['dataset'], flatten_images=True)
def evaluate(net, weight_values, images, labels, return_std=False, verbose=False):
"""
Evaluate the fitness of the network by running it on a batch of images.
Args:
net (WeightAgnosticNetwork): The network to evaluate.
weight_values (iterable of float): The weight values to evaluate on.
images (array, shape batch_size x pixels): The batch of images to evaluate on.
labels (array, shape batch_size): The correct labels for the images.
return_std (bool, optional): If True, return the standard deviation across weight values
in addition to the mean across weight values (default: False).
verbose (bool, optional): Verbose mode (default: False).
Returns:
Reward (= negative cross entropy loss) and accuracy in mean (mean of all weight values) and
max (best weight value) setting. If return_std is True, the standard deviations across
weight values (only for mean setting) are returned as well.
"""
# Sanity check 1: Train on zero input and dataset target.
#images = np.zeros_like(images)
# Sanity check 2: Train on dataset input and zero target.
#labels = np.zeros_like(labels)
# Sanity check 3: Overfit on a single batch.
#images = fixed_batch_images
#batch_labels = fixed_batch_labels
losses = np.zeros(len(weight_values))
accs = np.zeros(len(weight_values))
for i, weight_value in enumerate(weight_values):
output = net.forward(images, weight_value)
# TODO: Maybe remove torch stuff here, we don't use it anyway for WANN.
if params['use_torch']:
loss = torch.nn.functional.cross_entropy(output, labels).item()
# The output here isn't softmaxed, but it doesn't matter because we only
# take the argmax and softmax doesn't change the maximum.
pred_labels = output.argmax(1)
acc = (pred_labels == labels).float().mean()
else:
loss = torch.nn.functional.cross_entropy(torch.from_numpy(output),
torch.from_numpy(labels)).item()
pred_labels = output.argmax(1)
acc = (pred_labels == labels).mean()
losses[i] = loss
accs[i] = acc
mean_reward = -losses.mean() # reward is negative cross-entropy loss
mean_reward_std = losses.std()
max_reward = (-losses).max()
mean_acc = accs.mean()
mean_acc_std = accs.std()
max_acc = accs[np.argmax(-losses)] # use the run with maximal reward
if verbose:
logging.info(f'Evaluating net ({net}): mean reward: {mean_reward:.3f} '
f'+- {mean_reward_std:.3f} (acc: {mean_acc:.3f} +- {mean_acc_std:.3f}), '
f'max reward: {max_reward:.3f} (acc: {max_acc:.3f})')
if return_std:
return mean_reward, max_reward, mean_acc, max_acc, mean_reward_std, mean_acc_std
else:
return mean_reward, max_reward, mean_acc, max_acc
# Create initial population.
population = [
WeightAgnosticNetwork(params['num_inputs'], params['num_outputs'],
params['p_initial_connection_enabled'], params['p_change_activation'],
params['p_add_connection'], params['p_add_node'],
use_torch=params['use_torch'])
for _ in range(params['population_size'])]
# Keep track of best network of all generations (= champion).
champion = {'mean_reward': -np.inf}
# Evolution loop.
with joblib.Parallel(n_jobs=params['num_workers']) as parallel:
for generation in range(params['num_generations']):
start_time_generation = time.time()
# Pick a batch from MNIST. Use the same batch for all networks in this generation. This
# makes it easier to compare different mutations and significantly improves performance.
indices = np.random.randint(len(train_images), size=params['batch_size'])
batch_images = train_images[indices]
batch_labels = train_labels[indices]
# Evaluate fitness of all networks.
start_time_evaluation = time.time()
objectives = parallel(joblib.delayed(evaluate)(net, train_weight_values, batch_images,
batch_labels) for net in population)
objectives = np.array(objectives) # shape: population_size, 4
mean_rewards = objectives[:, 0]
max_rewards = objectives[:, 1]
mean_accs = objectives[:, 2]
max_accs = objectives[:, 3]
complexities = np.array([net.get_num_connections() for net in population])
complexities = np.maximum(complexities, 1) # prevent 0 division
time_evaluation = time.time() - start_time_evaluation
# Pick best net from this generation (based on mean reward) and check
# if it's better than the previously observed best net (= champion).
start_time_champion_evaluation = time.time()
best_index = mean_rewards.argmax()
if mean_rewards[best_index] > champion['mean_reward']:
# Check again on entire training set to make sure it wasn't a lucky shot.
# TODO: See how long this takes, maybe parallelize across weight values,
# similar to run-wann-gym.py.
exact_results = evaluate(population[best_index], train_weight_values, train_images,
train_labels, return_std=True)
if exact_results[0] > champion['mean_reward']:
champion = {'net': copy.deepcopy(population[best_index]),
'mean_reward': exact_results[0],
'max_reward': exact_results[1],
'mean_acc': exact_results[2],
'max_acc': exact_results[3],
'mean_reward_std': exact_results[4],
'mean_acc_std': exact_results[5]}
# Save new champion net to file.
with open(os.path.join(out_dir, 'champion_network.pkl'), 'wb') as f:
pickle.dump(champion['net'], f)
time_champion_evaluation = time.time() - start_time_champion_evaluation
# Write metrics to log and tensorboard.
logging.info(
f'{generation} - Best net: mean reward: {mean_rewards[best_index]:.3f} '
f'(acc: {mean_accs[best_index]:.3f}), max reward: {max_rewards[best_index]:.3f} '
f'(acc: {max_accs[best_index]:.3f}) - evaluation: {time_evaluation:.1f} s, '
f'champion evaluation: {time_champion_evaluation:.1f} s')
writer.add_scalar('best/mean_reward', mean_rewards[best_index], generation)
writer.add_scalar('best/mean_acc', mean_accs[best_index], generation)
writer.add_scalar('best/max_reward', max_rewards[best_index], generation)
writer.add_scalar('best/max_acc', max_accs[best_index], generation)
if generation % params['test_every'] == 0:
# Run champion net on test set on more weight values
if 'test_mean_reward' not in champion:
# Test evaluation 1: Each weight used in training.
champion['test_mean_reward'], champion['test_max_reward'], \
champion['test_mean_acc'], champion['test_max_acc'], \
champion['test_mean_reward_std'], champion['test_mean_acc_std'] = evaluate(
champion['net'], train_weight_values, test_images, test_labels, return_std=True)
# Test evaluation 2: 10 linearly spaced weights.
test_mean_reward_2, test_max_reward_2, test_mean_acc_2, test_max_acc_2, \
test_mean_reward_std_2, test_mean_acc_std_2 = evaluate(
champion['net'], np.linspace(-2, 2, 10), test_images, test_labels,
return_std=True)
logging.info(f'All-time champion net on train set: '
f'mean reward: {champion["mean_reward"]:.3f} '
f'+- {champion["mean_reward_std"]:.3f} '
f'(acc: {champion["mean_acc"]:.3f} +- {champion["mean_acc_std"]:.3f}), '
f'max reward: {champion["max_reward"]:.3f} '
f'(acc: {champion["max_acc"]:.3f})')
logging.info(f' ...on test set: '
f'mean reward: {champion["test_mean_reward"]:.3f} '
f'+- {champion["test_mean_reward_std"]:.3f} '
f'(acc: {champion["test_mean_acc"]:.3f} '
f'+- {champion["test_mean_acc_std"]:.3f}), '
f'max reward: {champion["test_max_reward"]:.3f} '
f'(acc: {champion["test_max_acc"]:.3f})')
logging.info(f' ...on test set with 10 lin. spaced weight values: '
f'mean reward: {test_mean_reward_2:.3f} '
f'+- {test_mean_reward_std_2:.3f} '
f'(acc: {test_mean_acc_2:.3f} '
f'+- {test_mean_acc_std_2:.3f}), '
f'max reward: {test_max_reward_2:.3f} '
f'(acc: {test_max_acc_2:.3f})')
writer.add_scalar('champion/mean_reward', champion['mean_reward'], generation)
writer.add_scalar('champion/mean_acc', champion['mean_acc'], generation)
writer.add_scalar('champion/max_reward', champion['max_reward'], generation)
writer.add_scalar('champion/max_acc', champion['max_acc'], generation)
writer.add_scalar('champion/test_mean_reward', champion['test_mean_reward'], generation)
writer.add_scalar('champion/test_mean_acc', champion['test_mean_acc'], generation)
writer.add_scalar('champion/test_max_reward', champion['test_max_reward'], generation)
writer.add_scalar('champion/test_max_acc', champion['test_max_acc'], generation)
writer.add_scalar('champion/connections', champion['net'].get_num_connections(),
generation)
writer.add_scalar('champion/neurons', champion['net'].num_neurons, generation)
writer.add_scalar('champion/layers', len(champion['net'].neurons_in_layer), generation)
utils.write_networks_stats(writer, population, generation)
utils.log_network_stats(population, writer, generation)
logging.info('')
# Rank networks based on the evaluation metrics.
start_time_ranking = time.time()
ranks = rank_by_dominance(mean_rewards, max_rewards, complexities,
p_complexity_objective=params['p_complexity_objective'])
time_ranking = time.time() - start_time_ranking
# Make new population by picking networks via tournament selection and mutating them.
start_time_reproduction = time.time()
new_population = reproduce_tournament(population, ranks, params['tournament_size'],
cull_ratio=params['cull_ratio'],
elite_ratio=params['elite_ratio'],
num_mutations=params['num_mutations_per_generation'])
population = new_population
time_reproduction = time.time() - start_time_reproduction
time_generation = time.time() - start_time_generation
writer.add_scalar('times/complete_generation', time_generation, generation)
writer.add_scalar('times/evaluation', time_evaluation, generation)
writer.add_scalar('times/champion_evaluation', time_champion_evaluation, generation)
writer.add_scalar('times/ranking', time_ranking, generation)
writer.add_scalar('times/reproduction', time_reproduction, generation)
writer.close()