-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmodels.py
81 lines (69 loc) · 2.93 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
from torch import nn
import nn as custom
class Model(nn.Module):
def __init__(self, input_size=1, layers=["LSTM_51"], output_size=1, sigmoid=None, tanh=None, biases=True):
super(Model, self).__init__()
self.input_size = input_size
self.output_size = output_size
self.layers = []
prev_size = input_size
for l, spec in enumerate(layers):
bits = spec.split("_")
cell_type = bits.pop(0)
print(spec, cell_type, bits)
if hasattr(custom, cell_type):
layer = getattr(custom, cell_type)
elif hasattr(nn, cell_type):
layer = getattr(nn, cell_type)
else:
raise Exception("Unrecognised layer type " + cell_type)
layer_args = {}
if "input_size" in layer.__init__.__code__.co_varnames:
layer_args["input_size"] = prev_size
if "hidden_size" in layer.__init__.__code__.co_varnames:
layer_args["hidden_size"] = int(bits.pop(0))
prev_size = layer_args["hidden_size"]
for a in bits:
print(a)
k, v = a.split("=")
k = k.replace("-", "_")
if k not in layer.__init__.__code__.co_varnames:
print("kwarg", k, "for", cell_type, "not recognised")
continue
for t in (int, float):
try:
v = t(v)
break
except ValueError:
pass
layer_args[k] = v
if "tanh" in layer.__init__.__code__.co_varnames:
layer_args["tanh"] = tanh
if "sigmoid" in layer.__init__.__code__.co_varnames:
layer_args["sigmoid"] = sigmoid
if "bias" in layer.__init__.__code__.co_varnames:
layer_args["bias"] = biases
print("Adding layer of type", spec, ":", layer_args)
layer = layer(**layer_args,)
self.layers.append(layer)
self.add_module("layer"+str(l), layer)
if prev_size != output_size:
print("Adding linear layer :", prev_size, "->", output_size)
layer = nn.Linear(prev_size, output_size)
self.layers.append(layer)
self.add_module("layer"+str(l+1), layer)
def reset_hidden(self):
for layer in self.layers:
if hasattr(layer, "reset_hidden"):
layer.reset_hidden()
# for module in self.modules():
# if module is not self and hasattr(module, "reset_hidden"):
# module.reset_hidden()
def detach_hidden(self):
for layer in self.layers:
if hasattr(layer, "detach_hidden"):
layer.detach_hidden()
def forward(self, data, future=0):
for layer in self.layers:
data = layer(data)
return data