-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun.py
220 lines (182 loc) · 9.36 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import logging
import argparse
import matplotlib
import pandas as pd
from matplotlib import pyplot as plt
from numpy import mean
from stable_baselines3 import PPO, A2C
from stable_baselines3.common.callbacks import CheckpointCallback
from sb3_contrib import RecurrentPPO, MaskablePPO
from stable_baselines3.common.vec_env import SubprocVecEnv, VecMonitor
from envs.loadbalancer_k8s_env import LoadBalancerK8sEnv
from envs.ppo_deepset import PPO_DeepSets
from envs.dqn_deepset import DQN_DeepSets
matplotlib.use('TkAgg')
# Logging
logging.basicConfig(filename='run.log', filemode='w', level=logging.INFO)
logging.basicConfig(format='%(asctime)s %(message)s', datefmt='%m/%d/%Y %I:%M:%S %p')
parser = argparse.ArgumentParser(description='Run RL Agent!')
parser.add_argument('--alg', default='dqn_deepsets',
help='The algorithm: ["mask_ppo", "recurrent_ppo", "ppo", "mask_ppo", "ppo_deepsets", "dqn_deepsets"]')
parser.add_argument('--env_name', default='loadbalancer', help='Env: ["loadbalancer"]')
parser.add_argument('--num_endpoints', default=6, help='num_endpoints: 4, 8, etc')
parser.add_argument('--rejection', default=False, action="store_true", help='Testing mode')
parser.add_argument('--num_zones', default=4, help='num_zones: 4, 8, etc')
parser.add_argument('--num_nodes', default=24, help='num_nodes: 4, 8, etc')
parser.add_argument('--reward', default='multi', help='reward: ["naive", "latency", "fairness", "multi"]')
parser.add_argument('--training', default=True, action="store_true", help='Training mode')
parser.add_argument('--testing', default=False, action="store_true", help='Testing mode')
parser.add_argument('--loading', default=False, action="store_true", help='Loading mode')
parser.add_argument('--load_path',
default='results/a2c/multi/'
'ppo_env_loadbalancer_num_endpoints_6_num_zones_4_reward_multi_totalSteps_200000_run_1/'
'ppo_env_loadbalancer_num_endpoints_6_num_zones_4_reward_multi_totalSteps_200000',
help='Loading path, ex: logs/model/test.zip')
parser.add_argument('--test_path', default='results/loadbalancer/multi/'
'a2c_env_loadbalancer_num_endpoints_6_num_zones_4_reward_multi_totalSteps_200000_run_1/'
'a2c_env_loadbalancer_num_endpoints_6_num_zones_4_reward_multi_totalSteps_200000',
help='Testing path, ex: logs/model/test.zip')
parser.add_argument('--steps', default=200000, help='Save model after X steps')
parser.add_argument('--total_steps', default=200000, help='The total number of steps.')
# TODO: add other arguments if needed
# parser.add_argument('--k8s', default=False, action="store_true", help='K8s mode')
# parser.add_argument('--goal', default='cost', help='Reward Goal: ["cost", "latency"]')
args = parser.parse_args()
def get_model(alg, env, tensorboard_log):
model = 0
if alg == 'ppo':
model = PPO("MlpPolicy", env, verbose=1, tensorboard_log=tensorboard_log, n_steps=500)
elif alg == 'recurrent_ppo':
model = RecurrentPPO("MlpLstmPolicy", env, verbose=1, tensorboard_log=tensorboard_log)
elif alg == 'a2c':
model = A2C("MlpPolicy", env, verbose=1, tensorboard_log=tensorboard_log) # , n_steps=steps
elif alg == 'mask_ppo':
model = MaskablePPO("MlpPolicy", env, gamma=0.95, verbose=1, tensorboard_log=tensorboard_log) # , n_steps=steps
elif alg == 'ppo_deepsets':
model = PPO_DeepSets(env, num_steps=100, n_minibatches=8, ent_coef=0.001, tensorboard_log=tensorboard_log,
seed=2)
elif alg == 'dqn_deepsets':
model = DQN_DeepSets(env, num_steps=100, n_minibatches=8, tensorboard_log=tensorboard_log)
else:
logging.info('Invalid algorithm!')
return model
def get_load_model(env, alg, tensorboard_log, load_path):
if alg == 'ppo':
return PPO.load(load_path, reset_num_timesteps=False, verbose=1, tensorboard_log=tensorboard_log, n_steps=500)
elif alg == 'recurrent_ppo':
return RecurrentPPO.load(load_path, reset_num_timesteps=False, verbose=1,
tensorboard_log=tensorboard_log) # n_steps=steps
elif alg == 'a2c':
return A2C.load(load_path, reset_num_timesteps=False, verbose=1, tensorboard_log=tensorboard_log)
elif alg == 'mask_ppo':
return MaskablePPO.load(load_path, reset_num_timesteps=False, verbose=1, tensorboard_log=tensorboard_log)
elif alg == 'ppo_deepsets':
agent = PPO_DeepSets(env, tensorboard_log=None)
return agent.load(f"" + load_path)
elif alg == 'dqn_deepsets':
agent = DQN_DeepSets(env, tensorboard_log=None)
return agent.load(f"" + load_path)
else:
logging.info('Invalid algorithm!')
def get_env(env_name, rejection, num_endpoints, num_zones, num_nodes, reward_function):
envs = 0
latency_weight = 1.0
cpu_weight = 0
gini_weight = 0.0
if env_name == "loadbalancer":
env = LoadBalancerK8sEnv(num_nodes=num_nodes, num_zones=num_zones, num_endpoints=num_endpoints,
rejection_allowed=rejection,
arrival_rate_r=100, call_duration_r=1,
episode_length=100,
reward_function=reward_function,
latency_weight=latency_weight, cpu_weight=cpu_weight, gini_weight=gini_weight)
# For faster training!
# otherwise just comment the following lines
env.reset()
_, _, _, info = env.step(0)
info_keywords = tuple(info.keys())
env = SubprocVecEnv(
[lambda: LoadBalancerK8sEnv(num_nodes=num_nodes, num_zones=num_zones, num_endpoints=num_endpoints,
rejection_allowed=rejection,
arrival_rate_r=100,
call_duration_r=1, episode_length=100,
reward_function=reward_function,
latency_weight=latency_weight, cpu_weight=cpu_weight, gini_weight=gini_weight)
for i in range(8)])
envs = VecMonitor(env, filename="vec_loadbalancer_k8s_gym_results", info_keywords=info_keywords)
else:
logging.info('Invalid environment!')
return envs
def test_model(model, env, n_episodes, n_steps, smoothing_window, fig_name):
episode_rewards = []
reward_sum = 0
obs = env.reset()
print("------------Testing -----------------")
for e in range(n_episodes):
for _ in range(n_steps):
action, _ = model.predict(obs)
obs, reward, done, info = env.step(action)
# Remember to consider only one env!
reward_sum += float(reward)
if done:
episode_rewards.append(reward_sum)
print("Episode {} | Total reward: {} |".format(e, str(reward_sum)))
reward_sum = 0
obs = env.reset()
break
env.close()
# Free memory
del model, env
# Plot the episode reward over time
plt.figure()
rewards_smoothed = pd.Series(episode_rewards).rolling(smoothing_window, min_periods=smoothing_window).mean()
plt.plot(rewards_smoothed)
plt.xlabel("Episode")
plt.ylabel("Reward")
plt.savefig(fig_name, dpi=250, bbox_inches='tight')
def main():
# Import and initialize Environment
logging.info(args)
alg = args.alg
env_name = args.env_name
reward = args.reward
num_nodes = int(args.num_nodes)
num_zones = int(args.num_zones)
num_endpoints = int(args.num_endpoints)
rejection = args.rejection
loading = args.loading
load_path = args.load_path
training = args.training
testing = args.testing
test_path = args.test_path
steps = int(args.steps)
total_steps = int(args.total_steps)
env = get_env(env_name, rejection, num_endpoints, num_zones, num_nodes, reward)
print("env: {}".format(env))
tensorboard_log = "results/" + env_name + "/" + reward + "/"
name = alg + "_env_" + env_name + "_num_endpoints_" + str(num_endpoints) \
+ "_num_zones_" + str(num_zones) \
+ "_reward_" + reward + "_totalSteps_" + str(total_steps)
# callback: does not work with multiple envs
checkpoint_callback = CheckpointCallback(save_freq=steps, save_path="logs/" + name, name_prefix=name)
# Training selected
if training:
if loading: # resume training
model = get_load_model(alg, tensorboard_log, load_path)
model.set_env(env)
model.learn(total_timesteps=total_steps, tb_log_name=name + "_run", callback=checkpoint_callback)
else:
if alg == "ppo_deepsets" or alg == 'dqn_deepsets':
model = get_model(alg, env, tensorboard_log)
print("model: {}".format(model))
model.learn(total_timesteps=total_steps)
else:
model = get_model(alg, env, tensorboard_log)
model.learn(total_timesteps=total_steps, tb_log_name=name + "_run", callback=checkpoint_callback)
model.save(name)
# Testing selected
if testing:
model = get_load_model(env, alg, tensorboard_log, test_path)
test_model(model, env, n_episodes=1, n_steps=100, smoothing_window=5, fig_name=name + "_test_reward.png")
if __name__ == "__main__":
main()