-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtest.py
179 lines (155 loc) · 6.28 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import datetime
import time
import argparse
import pandas as pd
import numpy as np
from pathlib import Path
from Bio import SeqIO
import torch
import misc
from modeling.mutate_everything import MutateEverything
from data import one_to_three, one_letters
def get_args_parser():
parser = argparse.ArgumentParser('Output ddgs for all single and double mutations')
# input params
parser.add_argument('--name', type=str, help='name to save under')
parser.add_argument('--seq', type=str, help='raw sequence or fasta file')
parser.add_argument('--msa_dir', type=str, help='directory with 1 or more a3m files')
parser.add_argument('--output_dir', type=Path, default='logs/debug')
parser.add_argument('--seed', type=int, default=0)
# model params
parser.add_argument('--resume', default='', type=str)
parser.add_argument('--aa_expand', default='backbone', help='scratch|backbone')
parser.add_argument('--single_dec', default='naive', help='naive')
parser.add_argument('--multi_dec', default='epistasis', help='additive|epistasis')
parser.add_argument('--head_dim', type=int, default=128)
parser.add_argument('--backbone', default='esm2_t33_650M_UR50D', help='af|esm2_t33_650M_UR50D')
parser.add_argument('--finetune_backbone', type=str, default='models/finetuning_ptm_2.pt')
parser.add_argument('--freeze_at', default=0, help='freeze backbone up to layer X')
parser.add_argument('--device', default='cuda')
# af params
parser.add_argument('--n_msa_seqs', type=int, default=128)
parser.add_argument('--n_extra_msa_seqs', type=int, default=1024)
parser.add_argument('--af_extract_feat', type=str, default='both',
help='which features to use from AF: both|evo|struct')
return parser
@torch.no_grad()
def forward_esm(model, alphabet, args):
device = torch.device(args.device)
## tokenize sequences
seqs = [('1', load_seq(args.seq))]
batch_converter = alphabet.get_batch_converter()
_, _, x = batch_converter(seqs)
x = x.to(device)
## forward model
model.to(device)
pred = model(x, {'seqs': [load_seq(args.seq)]})
return pred
@torch.no_grad()
def forward_af(model, args):
device = torch.device(args.device)
from openfold.config import model_config
from openfold.data import feature_pipeline, data_pipeline
## configs
config = model_config('finetuning', train=True)
config.data.train.max_extra_msa = 1024
config.data.predict.max_extra_msa = 1024
config.data.train.max_msa_clusters = 128
config.data.predict.max_msa_clusters = 128
## prepare inputs
data_processor = data_pipeline.DataPipeline(None)
feature_processor = feature_pipeline.FeaturePipeline(config.data)
feature_dict = data_processor.process_fasta(args.seq, args.msa_dir)
af_inputs = feature_processor.process_features(
feature_dict,
mode='predict',
)
x = [{k: v.to(device) for k, v in af_inputs.items()}]
## forward model
model.to(device)
pred = model(x, {'seqs': [load_seq(args.seq)]})
return pred
def load_seq(seq):
if '.fasta' in seq:
for record in SeqIO.parse(seq, 'fasta'):
seq = str(record.seq)
return seq
def main(args):
print('WARNING: We observe a cysteine stabilization bias when examining DMS predictions (cysteine is often predicted to be the most stabilizing substitution). We are unsure if this is an artifact from the training data but attempts to fix this bias lead to worse metrics on the test set. Use cysteine predictions with caution.')
# fix the seed for reproducibility
seed = args.seed + misc.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
## prepare model
model = MutateEverything(args)
misc.load_model(args, model, None, None)
model.eval()
## logging
print(f'Start testing')
start_time = time.time()
## forward model
seq = load_seq(args.seq)
if args.backbone == 'af':
pred = forward_af(model, args)
elif 'esm' in args.backbone:
_, alphabet = model.backbone.get_alphabet()
pred = forward_esm(model, alphabet, args)
mut1_ddg = pred['mut1_ddg'][0].cpu()
mut2_ddg = pred['mut2_ddg'][0].cpu()
## save single predictions
rows = []
for l in range(len(seq)):
mut1_ddg_l = mut1_ddg[l]
muts = {one_to_three[k]: v for k, v in zip(one_letters, mut1_ddg_l)}
muts = {f'pr{k}': f'{muts[k].item():.04f}' for k in sorted(muts)}
rows.append({
'seq_num': l + 1,
'wtAA': one_to_three[seq[l]],
'predAA': one_to_three[one_letters[mut1_ddg_l.argmin()]],
'pred_ddG': f'{mut1_ddg_l.min().item():.04f}',
'stable_mut_count': (mut1_ddg_l < -0.5).sum().item(),
'neutral_mut_count': ((-0.5 < mut1_ddg_l) & (mut1_ddg_l < 0.5)).sum().item(),
'destable_mut_count': (mut1_ddg_l > 0.5).sum().item(),
**muts,
'seq': seq,
})
df = pd.DataFrame.from_dict(rows)
fp = args.output_dir / f'{args.name}_single.csv'
print(f'Writing pred dms to {fp}')
df.to_csv(fp, index=False)
## save double predictions
stbl2 = mut2_ddg < -0.5
p1s, a1s, p2s, a2s = stbl2.nonzero(as_tuple=True)
cond = (p1s < p2s) & (a1s < a2s) # only upper triangle
p1s = p1s[cond]
a1s = a1s[cond]
p2s = p2s[cond]
a2s = a2s[cond]
muts = []
for p1, a1, p2, a2 in zip(p1s, a1s, p2s, a2s):
wt1 = seq[p1]
wt2 = seq[p2]
if wt1 == one_letters[a1] or wt2 == one_letters[a2]:
continue
m1 = f'{wt1}{p1+1}{one_letters[a1]}'
m2 = f'{wt2}{p2+1}{one_letters[a2]}'
ddg = mut2_ddg[p1,a1,p2,a2].item()
muts.append((m1, m2, ddg))
df2 = pd.DataFrame(muts, columns=['mut1', 'mut2', 'ddG'])
df2 = df2.sort_values('ddG')
fp = args.output_dir / f'{args.name}_double.csv'
print(f'Writing stabilizing doubles to {fp}')
df2.to_csv(fp, index=False)
## logging
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Testing time {}'.format(total_time_str))
if __name__ == '__main__':
args = get_args_parser()
args = args.parse_args()
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
args.finetune = None
args.test = True
args.eval = True
print(args)
main(args)