forked from satwikkansal/wtfpython
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME.md
2934 lines (2346 loc) · 90.8 KB
/
README.md
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<p align="center"><img src="images/logo.png" alt=""></p>
<h1 align="center">What the f*ck Python! 🐍</h1>
<p align="center">놀라운 파이썬 코드 예제들과 생소한 기능들.</p>
<p align="center">이 문서는 현재 번역이 진행 중인 미완성 문서입니다.</p>
<p align="center">진행중인 번역본은 `3.0--korean` 브랜치를 확인해주세요.</p>
<p align="center">
<a href="https://github.com/satwikkansal/wtfpython">English</a>
| <a href="https://github.com/leisurelicht/wtfpython-cn">中文</a>
| <a href="#">한글</a>
</p>
[![WTFPL 2.0][license-image]][license-url]
파이썬은 아름답게 디자인된 고급(high-level) 인터프리터 기반 언어로, 개발자의 편의를 생각한 기능들이 아주 많습니다. 다만 이런 파이썬의 생소한 기능들에 익숙하지 않은 사람들에게 "파이써닉"하게 쓰여진 코드가 어떤 일을 하는지 한 눈에 알아차리기란 쉽지 않습니다.
이 문서는 이러한 특유의 파이써닉한 코드들의 이해를 돕고, 파이썬이 주어진 코드를 어떻게 처리하는지 정확히 알고자는 목적으로 파이썬의 생소한 기능들 및 코드 예제를 정리한 문서입니다.
몇몇 예제는 WTF까지는 아닐지라도, 어느면에서는 파이썬의 모르고 있었던 부분에 대한 설명이되지 않을까 싶습니다. 이러한 예제들이 프로그래밍 언어가 어떻게 작동하는지에대해 이해를 돕고, 좋은 학습 방법이될거라고 생각합니다.
만약 본인이 파이썬 배경지식이 충분한 파이써니스타라면, 아래 예제들을 몇개나 한 번에 맞출수 있는지 도전해보세요. 이미 알고있는 예제들이 있다면 처음 그 파이썬스러움을 담은 문법을 접했을 그때 그 시절의 기억을 되살려줄수 있지않을까요? :sweat_smile:
PS: 이 문서를 이미 읽던중이었으면, 수정된 부분은 [여기](https://github.com/satwikkansal/wtfpython/releases/)서 확인하실수 있습니다.
# 목차
<!-- START doctoc generated TOC please keep comment here to allow auto update -->
<!-- DON'T EDIT THIS SECTION, INSTEAD RE-RUN doctoc TO UPDATE -->
- [메타 예제](#메타-예제)
- [사용 방법](#사용-방법)
- [👀 예제](#-예제)
- [섹션: 머리가 아플 수도 있어요!](#섹션-머리가-아플-수도-있어요)
- [▶ 알쏭달쏭 문자열 *](#-알쏭달쏭-문자열-)
- [▶ Time for some hash brownies!](#-time-for-some-hash-brownies)
- [▶ Return return everywhere!](#-return-return-everywhere)
- [▶ Deep down, we're all the same. *](#-deep-down-were-all-the-same-)
- [▶ For what?](#-for-what)
- [▶ Evaluation time discrepancy](#-evaluation-time-discrepancy)
- [▶ `is` is not what it is!](#-is-is-not-what-it-is)
- [▶ A tic-tac-toe where X wins in the first attempt!](#-a-tic-tac-toe-where-x-wins-in-the-first-attempt)
- [▶ The sticky output function](#-the-sticky-output-function)
- [▶ `is not ...` is not `is (not ...)`](#-is-not--is-not-is-not-)
- [▶ The surprising comma](#-the-surprising-comma)
- [▶ Backslashes at the end of string](#-backslashes-at-the-end-of-string)
- [▶ not knot!](#-not-knot)
- [▶ Half triple-quoted strings](#-half-triple-quoted-strings)
- [▶ Midnight time doesn't exist?](#-midnight-time-doesnt-exist)
- [▶ What's wrong with booleans?](#-whats-wrong-with-booleans)
- [▶ Class attributes and instance attributes](#-class-attributes-and-instance-attributes)
- [▶ yielding None](#-yielding-none)
- [▶ Mutating the immutable!](#-mutating-the-immutable)
- [▶ The disappearing variable from outer scope](#-the-disappearing-variable-from-outer-scope)
- [▶ When True is actually False](#-when-true-is-actually-false)
- [▶ From filled to None in one instruction...](#-from-filled-to-none-in-one-instruction)
- [▶ Subclass relationships *](#-subclass-relationships-)
- [▶ The mysterious key type conversion *](#-the-mysterious-key-type-conversion-)
- [▶ Let's see if you can guess this?](#-lets-see-if-you-can-guess-this)
- [Section: Appearances are deceptive!](#section-appearances-are-deceptive)
- [▶ Skipping lines?](#-skipping-lines)
- [▶ Teleportation *](#-teleportation-)
- [▶ Well, something is fishy...](#-well-something-is-fishy)
- [Section: Watch out for the landmines!](#section-watch-out-for-the-landmines)
- [▶ Modifying a dictionary while iterating over it](#-modifying-a-dictionary-while-iterating-over-it)
- [▶ Stubborn `del` operator *](#-stubborn-del-operator-)
- [▶ Deleting a list item while iterating](#-deleting-a-list-item-while-iterating)
- [▶ Loop variables leaking out!](#-loop-variables-leaking-out)
- [▶ Beware of default mutable arguments!](#-beware-of-default-mutable-arguments)
- [▶ Catching the Exceptions](#-catching-the-exceptions)
- [▶ Same operands, different story!](#-same-operands-different-story)
- [▶ The out of scope variable](#-the-out-of-scope-variable)
- [▶ Be careful with chained operations](#-be-careful-with-chained-operations)
- [▶ Name resolution ignoring class scope](#-name-resolution-ignoring-class-scope)
- [▶ Needle in a Haystack](#-needle-in-a-haystack)
- [Section: The Hidden treasures!](#section-the-hidden-treasures)
- [▶ Okay Python, Can you make me fly? *](#-okay-python-can-you-make-me-fly-)
- [▶ `goto`, but why? *](#-goto-but-why-)
- [▶ Brace yourself! *](#-brace-yourself-)
- [▶ Let's meet Friendly Language Uncle For Life *](#-lets-meet-friendly-language-uncle-for-life-)
- [▶ Even Python understands that love is complicated *](#-even-python-understands-that-love-is-complicated-)
- [▶ Yes, it exists!](#-yes-it-exists)
- [▶ Inpinity *](#-inpinity-)
- [▶ Mangling time! *](#-mangling-time-)
- [Section: Miscellaneous](#section-miscellaneous)
- [▶ `+=` is faster](#--is-faster)
- [▶ Let's make a giant string!](#-lets-make-a-giant-string)
- [▶ Explicit typecast of strings](#-explicit-typecast-of-strings)
- [▶ Minor Ones](#-minor-ones)
- [Contributing](#contributing)
- [Acknowledgements](#acknowledgements)
- [🎓 License](#-license)
- [Help](#help)
- [Want to share wtfpython with friends?](#want-to-share-wtfpython-with-friends)
- [Need a pdf version?](#need-a-pdf-version)
<!-- END doctoc generated TOC please keep comment here to allow auto update -->
# 메타 예제
모든 예제는 아래와 같이 주어집니다:
> ### ▶ 엄청난 제목 *
> 제목 끝의 별표(\*)는 첫 버전에는 없던, 새로 추가된 예제입니다.
>
> ```py
> # 코드 예제를 위한 준비
> # 파이썬의 놀라움을 기대하세요...
> ```
>
> **결과 (유효한 파이썬 버전):**
> ```py
> >>> 어느 입력1
> 신기한 결과
> ```
> (Optional): `신기한 결과`에 대한 한줄 설명.
>
>
> #### 💡 설명:
>
> * 코드의 결과에 관한 간단한 설명 및 이에 대한 이유.
> ```py
> 설명을 도울 예제
> ```
> **Output Output (Python version(s)):**
> ```py
> >>> 어느 입력2 # 이 입력은 파이썬스러움의 이해를 도울 예제이면 좋습니다.
> 신기하지만 이해 가능한 결과
> ```
**Note:** 모든 예제는 파이썬 3.5.2 버전에서 테스트되었으며, 특정 버전이 주어진 예제가 아닌 이상 모든 파이썬 버전에서 동일하게 작동합니다.
# 사용 방법
이 문서는 순서대로 읽어내려가며, 각 예제 별로 다음 아래 리스트대로 시도해보기를 권장합니다:
- 각 예제 코드의 첫 셋팅 부분을 잘 읽어주세요. 만약 파이썬 배경지식이 충분한 개발자라면 어떤 결과가 나올지에 대한 대부분의 짐작이 갈겁니다.
- 결과 코드를 읽고,
+ 짐작한 결과와 맞는지 확인해보세요.
+ 주어진 예제 코드가 어째서 그러한 결과를 낳는지 정확한 이유를 아셨나요?.
- 만약 아니라면 (걱정하지마세요), 숨 한번 크게 쉬시고, 설명을 읽어보세요 (그래도 어렵다면 주저하지마시고 [여기](https://github.com/satwikkansal/wtfPython)에 이슈를 작성해주시면 됩니다!).
- 만약 이미 알던 사실이라면 기뻐하셔도 좋습니다! 다음 예제로 넘어가세요.
PS: WTFPython은 커맨드라인으로 읽을 수도 있습니다. Pypi 패키지와 npm패키지가 있으며 두 버전 모두 동일합니다.
npm 패키지 설치: [`wtfpython`](https://www.npmjs.com/package/wtfpython)
```sh
$ npm install -g wtfpython
```
파이썬 패키지 설치: [`wtfpython`](https://pypi.python.org/pypi/wtfpython)
```sh
$ pip install wtfpython -U
```
설치가 끝났다면, 터미널에 `wtfpython` 입력하면 이 문서를 열 수 있습니다.
---
# 👀 예제
## 섹션: 머리가 아플 수도 있어요!
### ▶ 알쏭달쏭 문자열 *
<!-- Example ID: 30f1d3fc-e267-4b30-84ef-4d9e7091ac1a --->
1\.
```py
>>> a = "some_string"
>>> id(a)
140420665652016
>>> id("some" + "_" + "string") # 두 출력의 아이디가 같은 것에 주목하세요.
140420665652016
```
2\.
```py
>>> a = "wtf"
>>> b = "wtf"
>>> a is b
True
>>> a = "wtf!"
>>> b = "wtf!"
>>> a is b
False
```
3\.
**결과 (< 파이썬 3.7 )**
```py
>>> 'a' * 20 is 'aaaaaaaaaaaaaaaaaaaa'
True
>>> 'a' * 21 is 'aaaaaaaaaaaaaaaaaaaaa'
False
```
이해 되셨나요?
#### 💡 설명:
+ 이러한 결과는 CPython의 불변객체를 재활용하려는 최적화 방식때문인데(string interning이라고 함), 경우에따라 새로운 객체를 만들기보다는, 이미 만들어진 객체를 재활용하기에 나타나는 결과입니다.
+ 이러한 과정을 통해 다른 변수들이 사실 메모리 내에서는 같은 문자열을 가리키게 됩니다(즉, 메모리를 절약).
+ 주어진 예제에서는 문자열이 모두 암시적으로 최적화 과정을 겪었는데, 이는 구현 방식별로 결과가 다를 수 있습니다. 아래 주어진 사실에 기반해 문자열이 위의 최적화 과정을 겪을 것인지에 대해 짐작할 수 있습니다:
* 길이가 0 혹은 1인 모든 문자열은 위의 최적화 과정을 겪습니다.
* 모든 문자열은 컴파일 타임에 최적화됩니다. (`'wtf'` 은 최적화 과정을 거치나 `''.join(['w', 't', 'f']` 은 거치지 않는다.)
* ASCII로 이루어지지 않은 문자열, 숫자와 언더스코어는 이 과정을 겪지 않습니다. 위 예제에서 `'wtf!'`이 서로 다른 두 객체를 생성한 것은 바로 `!`때문 입니다. 이에 대한 Cpython의 세부적인 구현 사항은 [이 곳](https://github.com/python/cpython/blob/3.6/Objects/codeobject.c#L19)에서 확인하실 수 있습니다.
<img src="images/string-intern/string_intern.png" alt="">
+ 상수 폴딩은 [핍홀 최적화](https://en.wikipedia.org/wiki/Peephole_optimization)를 위해 파이썬이 사용하는 기법이며, 예제에서 `'a'*20`는 컴파일시 `'aaaaaaaaaaaaaaaaaaaa'`로 치환됩니다(이는 런타임에서 클럭수를 줄이는데 도움). 그렇다면 왜 `'a'*21`은 상수 폴딩을 거치지 않았냐구요? 상수폴딩은 길이가 20 이하인 문자열에 한하여 거치는 과정이기 때문입니다. (이유가 궁금하다면 `'a'*10**10`로 생성된 `.pyc` 파일의 크기를 상상해보세요). 이에 대한 구현은 [이 곳](https://github.com/python/cpython/blob/3.6/Python/peephole.c#L288)에서 확인하실 수 있습니다.
+ 참고: 상수 폴딩은 파이썬 3.7을 기준으로 파이썬의 최적화 로직에서 제외되었으며 이후 버전의 파이썬은 추상 구문 트리를 사용합니다. 이에 대한 변경 내용이 궁금하다면 [이 곳](https://bugs.python.org/issue11549)에서 확인하실 수 있습니다.
---
### ▶ Splitsies ^
<!-- Example ID: ec3168ba-a81a-4482-afb0-691f1cc8d65a --->
```py
>>> 'a'.split()
['a']
# is same as
>>> 'a'.split(' ')
['a']
# but
>>> len(''.split())
0
# isn't the same as
>>> len(''.split(' '))
1
```
#### 💡 Explanation:
- It might appear at first that the default seperator for split is a single space `' '`, but as per the [docs](https://docs.python.org/2.7/library/stdtypes.html#str.split),
> If sep is not specified or is None, a different splitting algorithm is applied: runs of consecutive whitespace are regarded as a single separator, and the result will contain no empty strings at the start or end if the string has leading or trailing whitespace. Consequently, splitting an empty string or a string consisting of just whitespace with a None separator returns `[]`.
> If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty strings (for example, `'1,,2'.split(',')` returns `['1', '', '2']`). Splitting an empty string with a specified separator returns `['']`.
- Noticing how the leading and trailing whitespaces are handled in the following snippet will make things clear,
```py
>>> ' a '.split(' ')
['', 'a', '']
>>> ' a '.split()
['a']
>>> ''.split(' ')
['']
```
---
### ▶ Time for some hash brownies!
<!-- Example ID: eb17db53-49fd-4b61-85d6-345c5ca213ff --->
1\.
```py
some_dict = {}
some_dict[5.5] = "Ruby"
some_dict[5.0] = "JavaScript"
some_dict[5] = "Python"
```
**Output:**
```py
>>> some_dict[5.5]
"Ruby"
>>> some_dict[5.0]
"Python"
>>> some_dict[5] # "Python" destroyed the existence of "JavaScript"?
"Python"
>>> complex_five = 5 + 0j
>>> type(complex_five)
complex
>>> some_dict[complex_five]
"Python"
```
So, why is Python all over the place?
#### 💡 Explanation
* Python dictionaries check for equality and compare the hash value to determine if two keys are the same.
* Immutable objects with same value always have the same hash in Python.
```py
>>> 5 == 5.0 == 5 + 0j
True
>>> hash(5) == hash(5.0) == hash(5 + 0j)
True
```
**Note:** Objects with different values may also have same hash (known as hash collision).
* When the statement `some_dict[5] = "Python"` is executed, the existing value "JavaScript" is overwritten with "Python" because Python recognizes `5` and `5.0` as the same keys of the dictionary `some_dict`.
* This StackOverflow [answer](https://stackoverflow.com/a/32211042/4354153) explains beautifully the rationale behind it.
---
### ▶ The disorder within order ^
<!-- Example ID: 91bff1f8-541d-455a-9de4-6cd8ff00ea66 --->
```py
from collections import OrderedDict
dictionary = dict()
dictionary[1] = 'a'; dictionary[2] = 'b';
ordered_dict = OrderedDict()
ordered_dict[1] = 'a'; ordered_dict[2] = 'b';
another_ordered_dict = OrderedDict()
another_ordered_dict[2] = 'b'; another_ordered_dict[1] = 'a';
class DictWithHash(dict):
"""
A dict that also implements __hash__ magic.
"""
__hash__ = lambda self: 0
class OrderedDictWithHash(OrderedDict):
"""
A dict that also implements __hash__ magic.
"""
__hash__ = lambda self: 0
```
**Output**
```py
>>> dictionary == ordered_dict # If a == b
True
>>> dictionary == another_ordered_dict # and b == c
True
>>> ordered_dict == another_ordered_dict # the why isn't c == a ??
False
# We all know that a set consists of only unique elements,
# let's try making a set of these dictionaries and see what happens...
>>> len({dictionary, ordered_dict, another_ordered_dict})
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'dict'
# Makes sense since dict don't have __hash__ implemented, let's use
# our wrapper classes.
>>> dictionary = DictWithHash()
>>> dictionary[1] = 'a'; dictionary[2] = 'b';
>>> ordered_dict = OrderedDictWithHash()
>>> ordered_dict[1] = 'a'; ordered_dict[2] = 'b';
>>> another_ordered_dict = OrderedDictWithHash()
>>> another_ordered_dict[2] = 'b'; another_ordered_dict[1] = 'a';
>>> len({dictionary, ordered_dict, another_ordered_dict})
1
>>> len({ordered_dict, another_ordered_dict, dictionary}) # changing the order
2
```
What is going on here?
#### 💡 Explanation:
- The reason why intransitive equality didn't hold among `dictionary`, `ordered_dict` and `another_ordered_dict` is because of the way `__eq__` method is implemented in `OrderedDict` class. From the [docs](https://docs.python.org/3/library/collections.html#ordereddict-objects)
> Equality tests between OrderedDict objects are order-sensitive and are implemented as `list(od1.items())==list(od2.items())`. Equality tests between `OrderedDict` objects and other Mapping objects are order-insensitive like regular dictionaries.
- The reason for this equality is behavior is that it allows `OrderedDict` objects to be directly substituted anywhere a regular dictionary is used.
- Okay, so why did changing the order affect the lenght of the generated `set` object? The answer is the lack of intransitive equality only. Since sets are "unordered" collections of unique elements, the order in which elements are inserted shouldn't matter. But in this case, it does matter. Let's break it down a bit,
```py
>>> some_set = set()
>>> some_set.add(dictionary) # these are the mapping objects from the snippets above
>>> ordered_dict in some_set
True
>>> some_set.add(ordered_dict)
>>> len(some_set)
1
>>> another_ordered_dict in some_set
True
>>> some_set.add(another_ordered_dict)
>>> len(some_set)
1
>>> another_set = set()
>>> another_set.add(ordered_dict)
>>> another_ordered_dict in another_set
False
>>> another_set.add(another_ordered_dict)
>>> len(another_set)
2
>>> dictionary in another_set
True
>>> another_set.add(another_ordered_dict)
>>> len(another_set)
2
```
So the inconsistency is due to `another_ordered_dict in another_set` being False because `ordered_dict` was already present in `another_set` and as observed before, `ordered_dict == another_ordered_dict` is `False`.
---
### ▶ Keep trying? *
<!-- Example ID: b4349443-e89f-4d25-a109-82616be9d41a --->
```py
def some_func():
try:
return 'from_try'
finally:
return 'from_finally'
def another_func():
for _ in range(3):
try:
continue
finally:
print("Finally!")
def one_more_func(): # A gotcha!
try:
for i in range(3):
try:
1 / i
except ZeroDivisionError:
# Let's throw it here and handle it outside for loop
raise ZeroDivisionError("A trivial divide by zero error")
finally:
print("Iteration", i)
break
except ZeroDivisionError as e:
print("Zero division error ocurred", e)
```
**Output:**
```py
>>> some_func()
'from_finally'
>>> another_func()
Finally!
Finally!
Finally!
>>> 1 / 0
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ZeroDivisionError: division by zero
>>> one_more_func()
Iteration 0
```
#### 💡 Explanation:
- When a `return`, `break` or `continue` statement is executed in the `try` suite of a "try…finally" statement, the `finally` clause is also executed ‘on the way out.
- The return value of a function is determined by the last `return` statement executed. Since the `finally` clause always executes, a `return` statement executed in the `finally` clause will always be the last one executed.
- The caveat here is, if the finally clause executes a `return` or `break` statement, the temporarily saved exception is discarded.
---
### ▶ Deep down, we're all the same. *
<!-- Example ID: 8f99a35f-1736-43e2-920d-3b78ec35da9b --->
```py
class WTF:
pass
```
**Output:**
```py
>>> WTF() == WTF() # two different instances can't be equal
False
>>> WTF() is WTF() # identities are also different
False
>>> hash(WTF()) == hash(WTF()) # hashes _should_ be different as well
True
>>> id(WTF()) == id(WTF())
True
```
#### 💡 Explanation:
* When `id` was called, Python created a `WTF` class object and passed it to the `id` function. The `id` function takes its `id` (its memory location), and throws away the object. The object is destroyed.
* When we do this twice in succession, Python allocates the same memory location to this second object as well. Since (in CPython) `id` uses the memory location as the object id, the id of the two objects is the same.
* So, object's id is unique only for the lifetime of the object. After the object is destroyed, or before it is created, something else can have the same id.
* But why did the `is` operator evaluated to `False`? Let's see with this snippet.
```py
class WTF(object):
def __init__(self): print("I")
def __del__(self): print("D")
```
**Output:**
```py
>>> WTF() is WTF()
I
I
D
D
False
>>> id(WTF()) == id(WTF())
I
D
I
D
True
```
As you may observe, the order in which the objects are destroyed is what made all the difference here.
---
### ▶ For what?
<!-- Example ID: 64a9dccf-5083-4bc9-98aa-8aeecde4f210 --->
```py
some_string = "wtf"
some_dict = {}
for i, some_dict[i] in enumerate(some_string):
pass
```
**Output:**
```py
>>> some_dict # An indexed dict is created.
{0: 'w', 1: 't', 2: 'f'}
```
#### 💡 Explanation:
* A `for` statement is defined in the [Python grammar](https://docs.python.org/3/reference/grammar.html) as:
```
for_stmt: 'for' exprlist 'in' testlist ':' suite ['else' ':' suite]
```
Where `exprlist` is the assignment target. This means that the equivalent of `{exprlist} = {next_value}` is **executed for each item** in the iterable.
An interesting example that illustrates this:
```py
for i in range(4):
print(i)
i = 10
```
**Output:**
```
0
1
2
3
```
Did you expect the loop to run just once?
**💡 Explanation:**
- The assignment statement `i = 10` never affects the iterations of the loop because of the way for loops work in Python. Before the beginning of every iteration, the next item provided by the iterator (`range(4)` this case) is unpacked and assigned the target list variables (`i` in this case).
* The `enumerate(some_string)` function yields a new value `i` (A counter going up) and a character from the `some_string` in each iteration. It then sets the (just assigned) `i` key of the dictionary `some_dict` to that character. The unrolling of the loop can be simplified as:
```py
>>> i, some_dict[i] = (0, 'w')
>>> i, some_dict[i] = (1, 't')
>>> i, some_dict[i] = (2, 'f')
>>> some_dict
```
---
### ▶ Evaluation time discrepancy ^
<!-- Example ID: 6aa11a4b-4cf1-467a-b43a-810731517e98 --->
1\.
```py
array = [1, 8, 15]
g = (x for x in array if array.count(x) > 0)
array = [2, 8, 22]
```
**Output:**
```py
>>> print(list(g))
[8]
```
2\.
```py
array_1 = [1,2,3,4]
g1 = (x for x in array_1)
array_1 = [1,2,3,4,5]
array_2 = [1,2,3,4]
g2 = (x for x in array_2)
array_2[:] = [1,2,3,4,5]
```
**Output:**
```py
>>> print(list(g1))
[1,2,3,4]
>>> print(list(g2))
[1,2,3,4,5]
```
3\.
```py
array_3 = [1, 2, 3]
array_4 = [10, 20, 30]
g = (i + j for i in array_3 for j in array_4)
array_3 = [4, 5, 6]
array_4 = [400, 500, 600]
```
**Output:**
```py
>>> print(list(g))
[401, 501, 601, 402, 502, 602, 403, 503, 603]
```
#### 💡 Explanation
- In a [generator](https://wiki.python.org/moin/Generators) expression, the `in` clause is evaluated at declaration time, but the conditional clause is evaluated at runtime.
- So before runtime, `array` is re-assigned to the list `[2, 8, 22]`, and since out of `1`, `8` and `15`, only the count of `8` is greater than `0`, the generator only yields `8`.
- The differences in the output of `g1` and `g2` in the second part is due the way variables `array_1` and `array_2` are re-assigned values.
- In the first case, `array_1` is binded to the new object `[1,2,3,4,5]` and since the `in` clause is evaluated at the declaration time it still refers to the old object `[1,2,3,4]` (which is not destroyed).
- In the second case, the slice assignment to `array_2` updates the same old object `[1,2,3,4]` to `[1,2,3,4,5]`. Hence both the `g2` and `array_2` still have reference to the same object (which has now been updated to `[1,2,3,4,5]`).
- Okay, going by the logic discussed so far, shouldn't be the value of `list(g)` in the third snippet be `[11, 21, 31, 12, 22, 32, 13, 23, 33]`? (because `array_3` and `array_4` are going to behave just like `array_1`). The reason why (only) `array_4` values got updated is explained in [PEP-289](https://www.python.org/dev/peps/pep-0289/#the-details)
> Only the outermost for-expression is evaluated immediately, the other expressions are deferred until the generator is run.
---
### ▶ Messing around with `is` operator^
<!-- Example ID: 230fa2ac-ab36-4ad1-b675-5f5a1c1a6217 --->
The following is a very famous example present all over the internet.
1\.
```py
>>> a = 256
>>> b = 256
>>> a is b
True
>>> a = 257
>>> b = 257
>>> a is b
False
```
2\.
```py
>>> a = []
>>> b = []
>>> a is b
False
>>> a = tuple()
>>> b = tuple()
>>> a is b
True
```
3\.
**Output (< Python 3.7)**
```
>>> a, b = 257, 257
True
>>> a = 257; b = 257
>>> a is b
True
```
**Output (Python 3.7)**
```
>>> a, b = 257, 257
False
>>> a = 257; b = 257
>>> a is b
True
```
#### 💡 Explanation:
**The difference between `is` and `==`**
* `is` operator checks if both the operands refer to the same object (i.e., it checks if the identity of the operands matches or not).
* `==` operator compares the values of both the operands and checks if they are the same.
* So `is` is for reference equality and `==` is for value equality. An example to clear things up,
```py
>>> class A: pass
>>> A() is A() # These are two empty objects at two different memory locations.
False
```
**`256` is an existing object but `257` isn't**
When you start up python the numbers from `-5` to `256` will be allocated. These numbers are used a lot, so it makes sense just to have them ready.
Quoting from https://docs.python.org/3/c-api/long.html
> The current implementation keeps an array of integer objects for all integers between -5 and 256, when you create an int in that range you just get back a reference to the existing object. So it should be possible to change the value of 1. I suspect the behavior of Python, in this case, is undefined. :-)
```py
>>> id(256)
10922528
>>> a = 256
>>> b = 256
>>> id(a)
10922528
>>> id(b)
10922528
>>> id(257)
140084850247312
>>> x = 257
>>> y = 257
>>> id(x)
140084850247440
>>> id(y)
140084850247344
```
Here the interpreter isn't smart enough while executing `y = 257` to recognize that we've already created an integer of the value `257,` and so it goes on to create another object in the memory.
Similar optimization applies to other **immutable** objects like empty tuples as well. Since lists are mutable, that's why `[] is []` will return `False` and `() is ()` will return `True`. This explains our second snippet. Let's move on to the third one,
**Both `a` and `b` refer to the same object when initialized with same value in the same line.**
**Output (< Python 3.7)**
```py
>>> a, b = 257, 257
>>> id(a)
140640774013296
>>> id(b)
140640774013296
>>> a = 257
>>> b = 257
>>> id(a)
140640774013392
>>> id(b)
140640774013488
```
* When a and b are set to `257` in the same line, the Python interpreter creates a new object, then references the second variable at the same time. If you do it on separate lines, it doesn't "know" that there's already `257` as an object.
* It's a compiler optimization and specifically applies to the interactive environment. When you enter two lines in a live interpreter, they're compiled separately, therefore optimized separately. If you were to try this example in a `.py` file, you would not see the same behavior, because the file is compiled all at once.
* Why didn't this work for Python 3.7? The abstract reason is because such compiler optimizations are implementation specific (i.e. may change with version, OS, etc). I'm still figuring out what exact implementation change cause the issue, you can check out this [issue](https://github.com/satwikkansal/wtfpython/issues/100) for updates.
---
### ▶ A tic-tac-toe where X wins in the first attempt!
<!-- Example ID: 69329249-bdcb-424f-bd09-cca2e6705a7a --->
```py
# Let's initialize a row
row = [""]*3 #row i['', '', '']
# Let's make a board
board = [row]*3
```
**Output:**
```py
>>> board
[['', '', ''], ['', '', ''], ['', '', '']]
>>> board[0]
['', '', '']
>>> board[0][0]
''
>>> board[0][0] = "X"
>>> board
[['X', '', ''], ['X', '', ''], ['X', '', '']]
```
We didn't assign 3 "X"s or did we?
#### 💡 Explanation:
When we initialize `row` variable, this visualization explains what happens in the memory

And when the `board` is initialized by multiplying the `row`, this is what happens inside the memory (each of the elements `board[0]`, `board[1]` and `board[2]` is a reference to the same list referred by `row`)

We can avoid this scenario here by not using `row` variable to generate `board`. (Asked in [this](https://github.com/satwikkansal/wtfpython/issues/68) issue).
```py
>>> board = [['']*3 for _ in range(3)]
>>> board[0][0] = "X"
>>> board
[['X', '', ''], ['', '', ''], ['', '', '']]
```
---
### ▶ The sticky output function
<!-- Example ID: 4dc42f77-94cb-4eb5-a120-8203d3ed7604 --->
```py
funcs = []
results = []
for x in range(7):
def some_func():
return x
funcs.append(some_func)
results.append(some_func()) # note the function call here
funcs_results = [func() for func in funcs]
```
**Output:**
```py
>>> results
[0, 1, 2, 3, 4, 5, 6]
>>> funcs_results
[6, 6, 6, 6, 6, 6, 6]
```
Even when the values of `x` were different in every iteration prior to appending `some_func` to `funcs`, all the functions return 6.
//OR
```py
>>> powers_of_x = [lambda x: x**i for i in range(10)]
>>> [f(2) for f in powers_of_x]
[512, 512, 512, 512, 512, 512, 512, 512, 512, 512]
```
#### 💡 Explanation
- When defining a function inside a loop that uses the loop variable in its body, the loop function's closure is bound to the variable, not its value. So all of the functions use the latest value assigned to the variable for computation.
- To get the desired behavior you can pass in the loop variable as a named variable to the function. **Why this works?** Because this will define the variable again within the function's scope.
```py
funcs = []
for x in range(7):
def some_func(x=x):
return x
funcs.append(some_func)
```
**Output:**
```py
>>> funcs_results = [func() for func in funcs]
>>> funcs_results
[0, 1, 2, 3, 4, 5, 6]
```
---
### ▶ The chicken-egg problem ^
<!-- Example ID: 60730dc2-0d79-4416-8568-2a63323b3ce8 --->
1\.
```py
>>> isinstance(3, int)
True
>>> isinstance(type, object)
True
>>> isinstance(object, type)
True
```
2\. So which is the ultimate, base class? And wait, there's more to the confusion
```py
>>> class A: pass
>>> isinstance(A, A)
False
>>> isinstance(type, type)
True
>>> isinstance(object, object)
True
```
3\.
```py
>>> issubclass(int, object)
True
>>> issubclass(type, object)
True
>>> issubclass(object, type)
False
```
#### 💡 Explanation
- `type` is a [metaclass](https://realpython.com/python-metaclasses/) in Python.
- **Everything** is an `object` in Python, which includes classes as well as their objects (instances).
- class `type` is the metaclass of class `object`, and every class (including `type`) has inherited directly or indirectly from `object`.
- There is no real base class among `object` and `type`. The confusion in the above snippets is arising because we're thinking these relationships (`issubclass` and `isinstance`) in terms of Python classes. The relationship between `object` and `type` can't be reproduced in pure python. To be more precise the following relationships can't be reproduced in pure Python,
+ class A is instance of class B, and class B is an instance of class A.
+ class A is an instance of itself.
- These relationships between `object` and `type` (both being instances of eachother as well as themselves) exist in Python because of "cheating" at implementation level.
---
### ▶ `is not ...` is not `is (not ...)`
<!-- Example ID: b26fb1ed-0c7d-4b9c-8c6d-94a58a055c0d --->
```py
>>> 'something' is not None
True
>>> 'something' is (not None)
False
```
#### 💡 Explanation
- `is not` is a single binary operator, and has behavior different than using `is` and `not` separated.
- `is not` evaluates to `False` if the variables on either side of the operator point to the same object and `True` otherwise.
---
### ▶ The surprising comma
<!-- Example ID: 31a819c8-ed73-4dcc-84eb-91bedbb51e58 --->
**Output:**
```py
>>> def f(x, y,):
... print(x, y)
...
>>> def g(x=4, y=5,):
... print(x, y)
...
>>> def h(x, **kwargs,):
File "<stdin>", line 1
def h(x, **kwargs,):
^
SyntaxError: invalid syntax
>>> def h(*args,):
File "<stdin>", line 1
def h(*args,):
^
SyntaxError: invalid syntax
```
#### 💡 Explanation:
- Trailing comma is not always legal in formal parameters list of a Python function.
- In Python, the argument list is defined partially with leading commas and partially with trailing commas. This conflict causes situations where a comma is trapped in the middle, and no rule accepts it.
- **Note:** The trailing comma problem is [fixed in Python 3.6](https://bugs.python.org/issue9232). The remarks in [this](https://bugs.python.org/issue9232#msg248399) post discuss in brief different usages of trailing commas in Python.
---
### ▶ Strings and the backslashes\ ^
<!-- Example ID: 6ae622c3-6d99-4041-9b33-507bd1a4407b --->
**Output:**
```py
>>> print("\"")
"
>>> print(r"\"")
\"
>>> print(r"\")
File "<stdin>", line 1
print(r"\")
^
SyntaxError: EOL while scanning string literal
>>> r'\'' == "\\'"
True
```
#### 💡 Explanation
- In a normal python string, the backslash is used to escape characters that may have special meaning (like single-quote, double-quote and the backslash itself).
```py
>>> 'wt\"f'
'wt"f'
```
- In a raw string literal (as indicated by the prefix `r`), the backslashes pass themselves as is along with the behavior of escaping the following character.
```py
>>> r'wt\"f' == 'wt\\"f'
True
>>> print(repr(r'wt\"f')
'wt\\"f'
>>> print("\n")
>>> print(r"\\n")
'\\\\n'
```
- This means when a parser encounters a backslash in a raw string, it expects another character following it. And in our case (`print(r"\")`), the backslash escaped the trailing quote, leaving the parser without a terminating quote (hence the `SyntaxError`). That's why backslashes don't work at the end of a raw string.
---
### ▶ not knot!
<!-- Example ID: 7034deb1-7443-417d-94ee-29a800524de8 --->
```py
x = True
y = False
```
**Output:**
```py
>>> not x == y
True
>>> x == not y
File "<input>", line 1
x == not y
^
SyntaxError: invalid syntax
```
#### 💡 Explanation:
* Operator precedence affects how an expression is evaluated, and `==` operator has higher precedence than `not` operator in Python.
* So `not x == y` is equivalent to `not (x == y)` which is equivalent to `not (True == False)` finally evaluating to `True`.
* But `x == not y` raises a `SyntaxError` because it can be thought of being equivalent to `(x == not) y` and not `x == (not y)` which you might have expected at first sight.