-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathdaft_plots.py
166 lines (116 loc) · 4.56 KB
/
daft_plots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import matplotlib.pyplot as plt
import daft
from matplotlib import rc
rc("font", family="serif", size=12)
rc("text", usetex=False)
# plt.rcParams['figure.figsize'] = 12, 8
def daft_pooled():
# create the PGM
pgm = daft.PGM(shape=[4, 2.5], origin=[0, 0], grid_unit=4,
label_params={'fontsize':18})
# priors
pgm.add_node(daft.Node("beta", r"$\beta$", 1, 2, scale=2))
# Latent variable.
pgm.add_node(daft.Node("mu", r"$\beta X_{n}$", 1, 1, scale=2))
# noise
pgm.add_node(daft.Node("epsilon", r"$\epsilon$", 3, 1, scale=2))
# observed data
pgm.add_node(daft.Node("y", r"$y_n$", 2, 1, scale=2, observed=True))
# edges
pgm.add_edge("beta", "mu")
pgm.add_edge("mu", "y")
pgm.add_edge("epsilon", "y")
# plate
pgm.add_plate(daft.Plate([0.5, 0.6, 2, 0.9],
label=r"$n \in 1:N$", shift=-0.1))
pgm.render()
plt.show()
def daft_unpooled():
# create the PGM
pgm = daft.PGM(shape=[5, 2.5], origin=[0, 0], grid_unit=4,
label_params={'fontsize':18})
# priors
pgm.add_node(daft.Node("beta_mfr", r"$\beta_{mfr}$", 1, 1, scale=2))
pgm.add_node(daft.Node("beta", r"$\beta$", 2, 2, scale=2))
# latent variable.
pgm.add_node(daft.Node("mu", r"$\beta X_{n}$", 2, 1, scale=2))
# noise
pgm.add_node(daft.Node("epsilon", r"$\epsilon$", 4, 1, scale=2))
# observed data
pgm.add_node(daft.Node("y", r"$y_n$", 3, 1, scale=2, observed=True))
# edges
pgm.add_edge("beta_mfr", "mu")
pgm.add_edge("beta", "mu")
pgm.add_edge("mu", "y")
pgm.add_edge("epsilon", "y")
# plates
pgm.add_plate(daft.Plate([1.5, 0.6, 2, 0.9],
label=r"$n \in 1:N$", shift=-0.1))
pgm.add_plate(daft.Plate([0.5, 0.5, 3.1, 1.1],
label=r"$mfr \in 1:N_{mfr}$", shift=-0.1))
pgm.render()
plt.show()
def daft_partpooled():
# create the PGM
pgm = daft.PGM(shape=[6, 2.5], origin=[0, 0], grid_unit=4,
label_params={'fontsize':18})
# priors
pgm.add_node(daft.Node("beta_mfr_mu", r"$\mu_{mfr}$", 1, 1, scale=2))
pgm.add_node(daft.Node("beta_mfr_sd", r"$\sigma_{mfr}$", 2, 2, scale=2))
pgm.add_node(daft.Node("beta_mfr", r"$\beta_{mfr}$", 2, 1, scale=2))
pgm.add_node(daft.Node("beta", r"$\beta$", 3, 2, scale=2))
# latent variable.
pgm.add_node(daft.Node("mu", r"$\beta X_{n}$", 3, 1, scale=2))
# noise
pgm.add_node(daft.Node("sigma", r"$\sigma$", 5, 1, scale=2))
# observed data
pgm.add_node(daft.Node("y", r"$y_n$", 4, 1, scale=2, observed=True))
# edges
pgm.add_edge("beta_mfr_mu", "beta_mfr")
pgm.add_edge("beta_mfr_sd", "beta_mfr")
pgm.add_edge("beta_mfr", "mu")
pgm.add_edge("beta", "mu")
pgm.add_edge("mu", "y")
pgm.add_edge("sigma", "y")
# plates
pgm.add_plate(daft.Plate([2.5, 0.6, 2, 0.9],
label=r"$n \in 1:N$", shift=-0.1))
pgm.add_plate(daft.Plate([1.5, 0.5, 3.1, 1.1],
label=r"$mfr \in 1:N_{mfr}$", shift=-0.1))
pgm.render()
plt.show()
def daft_hier():
# create the PGM
pgm = daft.PGM(shape=[7, 2.5], origin=[0, 0], grid_unit=4,
label_params={'fontsize':18})
# priors
pgm.add_node(daft.Node("beta_parent_mu", r"$\mu_{parent}$", 1, 1, scale=2))
pgm.add_node(daft.Node("beta_parent_sd", r"$\sigma_{parent}$", 2, 2.2, scale=2))
pgm.add_node(daft.Node("beta_mfr_mu", r"$\mu_{mfr}$", 2, 1, scale=2))
pgm.add_node(daft.Node("beta_mfr_sd", r"$\sigma_{mfr}$", 3, 2.2, scale=2))
pgm.add_node(daft.Node("beta_mfr", r"$\beta_{mfr}$", 3, 1, scale=2))
pgm.add_node(daft.Node("beta", r"$\beta$", 4, 2.2, scale=2))
# latent variable.
pgm.add_node(daft.Node("mu", r"$\beta X_{n}$", 4, 1, scale=2))
# noise
pgm.add_node(daft.Node("epsilon", r"$\epsilon$", 6.2, 1, scale=2))
# observed data
pgm.add_node(daft.Node("y", r"$y_n$", 5, 1, scale=2, observed=True))
# edges
pgm.add_edge("beta_parent_mu", "beta_mfr_mu")
pgm.add_edge("beta_parent_sd", "beta_mfr_mu")
pgm.add_edge("beta_mfr_mu", "beta_mfr")
pgm.add_edge("beta_mfr_sd", "beta_mfr")
pgm.add_edge("beta_mfr", "mu")
pgm.add_edge("beta", "mu")
pgm.add_edge("mu", "y")
pgm.add_edge("epsilon", "y")
# plates
pgm.add_plate(daft.Plate([3.5, 0.6, 2, 0.9],
label=r"$n \in 1:N$", shift=-0.1))
pgm.add_plate(daft.Plate([2.5, 0.5, 3.1, 1.1],
label=r"$mfr \in 1:N_{mfr}$", shift=-0.1))
pgm.add_plate(daft.Plate([1.5, 0.4, 4.2, 1.3],
label=r"$parent \in 1:N_{parent}$", shift=-0.1))
pgm.render()
plt.show()