Document number: P1050R0
Date: 2018-05-07
Reply-to: John McFarlane, fixed-point@john.mcfarlane.name
Audience: SG6, LEWG
This paper introduces a fractional number type which stores pairs of integer numerators and denominators. It avoids precision loss commonly associated with the storage of single-number quotients. It also helps express intent when initializing fixed-point types with the results of division operations.
Rational numbers provide a headache for digital number types such as the fundamental scalars.
We already have std::ratio
-- mostly as a necessary way of expressing different static scales in std::chrono
.
There has previously been discussion of sophisticated, general purpose bounded
[P0101] and unbounded
[P0101] rationals.
Boost has a rational type [Boost].
This paper proposes a fractional type that is compatible with the compositional approach detailed in [P0554]. As such it is designed to provide a zero-overhead abstraction over pairs of integers while also being an expressive, user-friendly, general-purpose statically-sized number type when combined with other numeric components.
The reason for proposing a fractional type at this time is because it serves a specific role in initialization of the fixed-point numbers described in [P0037].
Class template, fixed_point<>
from [P0037]
can be initialized with integer and floating-point values.
It is desirable that fixed_point<>
values also be the quotient in a division operation.
A divide
function was previously proposed in [P0037]:
auto a = divide(1, 3);
Straight away the question arises: what should be the resolution of a
? The solution proposed in
[P0106] is to determine the
number of fractional digits from the number of fractional digits in the numerator and integer digits in the denominator.
In the example above, a
has 31 fractional digits because literal, 3
, has 31 integer digits.
The result has value, 0.333333333022892475128173828125.
This solution is problematic when one considers all of the ways that 1
or 3
can be represented.
For example, using elastic_integer<>
[P0828] as the inputs
auto b = divide(elastic_integer<1>{1}, elastic_integer<2>{3});
results in a fixed_point
type with only 2 fractional digits.
The resultant approximation of 1/3
is 0.25
.
This is unlikely to be the desired result in most cases.
Specifying the output type is one solution:
auto c = divide<fixed_point<int, -16>>(1, 3);
auto d = divide<fixed_point<int, -16>>(elastic_integer<1>{1}, elastic_integer<2>{3});
Both c
and d
have values, 0.3333282470703125
.
However, it is not entirely clear that introducing a named function specifically for this purpose is necessary,
nor whether the interface is sufficiently intuitive.
By introducing a fractional type, fractional
template<class Numerator, class Denominator>
struct fractional {
// ...
Numerator numerator;
Denominator denominator;
};
we can express the same intent using only types:
auto a = fixed_point{fractional{1, 3}};
auto b = fixed_point{fractional{elastic_integer<1>{1}, elastic_integer<2>{3}}};
auto c = fixed_point<int, -16>{fractional{1, 3}};
auto d = fixed_point<int, -16>{fractional{elastic_integer<1>{1}, elastic_integer<2>{3}}};
template<class Numerator, class Denominator>
struct fractional {
using numerator_type = Numerator;
using denominator_type = Denominator;
explicit constexpr fractional(const Numerator& n, const Denominator& d);
explicit constexpr fractional(const Numerator& n);
template<class Scalar, _impl::enable_if_t<std::is_floating_point<Scalar>::value, int> = 0>
explicit constexpr operator Scalar() const;
numerator_type numerator;
denominator_type denominator = 1;
};
template<class Numerator, class Denominator>
fractional(const Numerator& n, const Denominator&)
-> fractional<Numerator, Denominator>;
template<class Numerator>
fractional(Numerator const& n)
-> fractional<Numerator, int>;
template<class Numerator, class Denominator>
constexpr auto reduce(fractional<Numerator, Denominator> const& f);
template<class LhsNumerator, class LhsDenominator, class RhsNumerator, class RhsDenominator>
constexpr auto operator+(
fractional<LhsNumerator, LhsDenominator> const& lhs,
fractional<RhsNumerator, RhsDenominator> const& rhs)
-> decltype(make_fractional(
lhs.numerator*rhs.denominator+rhs.numerator*lhs.denominator, lhs.denominator*rhs.denominator));
template<class LhsNumerator, class LhsDenominator, class RhsNumerator, class RhsDenominator>
constexpr auto operator-(
fractional<LhsNumerator, LhsDenominator> const& lhs,
fractional<RhsNumerator, RhsDenominator> const& rhs)
-> decltype(make_fractional(
lhs.numerator*rhs.denominator-rhs.numerator*lhs.denominator, lhs.denominator*rhs.denominator));
template<class LhsNumerator, class LhsDenominator, class RhsNumerator, class RhsDenominator>
constexpr auto operator*(
fractional<LhsNumerator, LhsDenominator> const& lhs,
fractional<RhsNumerator, RhsDenominator> const& rhs)
-> decltype(make_fractional(lhs.numerator*rhs.numerator, lhs.denominator*rhs.denominator));
template<class LhsNumerator, class LhsDenominator, class RhsNumerator, class RhsDenominator>
constexpr auto operator/(
fractional<LhsNumerator, LhsDenominator> const& lhs,
fractional<RhsNumerator, RhsDenominator> const& rhs)
-> decltype(make_fractional(lhs.numerator*rhs.denominator, lhs.denominator*rhs.numerator));
template<class LhsNumerator, class LhsDenominator, class RhsNumerator, class RhsDenominator>
constexpr auto operator==(
fractional<LhsNumerator, LhsDenominator> const& lhs,
fractional<RhsNumerator, RhsDenominator> const& rhs);
template<class LhsNumerator, class LhsDenominator, class RhsNumerator, class RhsDenominator>
constexpr auto operator!=(
fractional<LhsNumerator, LhsDenominator> const& lhs,
fractional<RhsNumerator, RhsDenominator> const& rhs);
fractional
is implemented as part of the CNL library
(header,
tests,
fixed_point integration).