-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcomparison_synthmix.py
77 lines (62 loc) · 2.6 KB
/
comparison_synthmix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import os
# comparison parameters
FCLS = True
LASSO = True
inftyNorm = True
pnorm = True
delta = False
date = "2019-07-11"
run_num = "0"
experiment = "synthmix"
path = "results/" + date + "/"
# load FCLS results
if FCLS:
filename = date + "_" + experiment + "_FCLS" + run_num + ".csv"
FCLS_results = pd.read_csv(path + filename)
# load LASSO results
if LASSO:
filename = date + "_" + experiment + "_LASSO" + run_num + ".csv"
LASSO_results = pd.read_csv(path + filename)
# load inftyNorm results
if inftyNorm:
filename = date + "_" + experiment + "_infty" + run_num + ".csv"
inftyNorm_results = pd.read_csv(path + filename)
if pnorm:
filename = date + "_" + experiment + "_pnorm" + run_num + ".csv"
pnorm_results = pd.read_csv(path + filename)
inftyNorm_metrics = [inftyNorm_results["accuracy"].mean(),
inftyNorm_results["precision"].mean(),
inftyNorm_results["recall"].mean(),
inftyNorm_results["Error_L1"].mean(),
inftyNorm_results["RMS_noisy"].mean(),
inftyNorm_results["RMS_true"].mean()]
FCLS_metrics = [FCLS_results["accuracy"].mean(),
FCLS_results["precision"].mean(),
FCLS_results["recall"].mean(),
FCLS_results["Error_L1"].mean(),
FCLS_results["RMS_noisy"].mean(),
FCLS_results["RMS_true"].mean()]
LASSO_metrics = [LASSO_results["accuracy"].mean(),
LASSO_results["precision"].mean(),
LASSO_results["recall"].mean(),
LASSO_results["Error_L1"].mean(),
LASSO_results["RMS_noisy"].mean(),
LASSO_results["RMS_true"].mean()]
pnrom_metrics = [pnorm_results["accuracy"].mean(),
pnorm_results["precision"].mean(),
pnorm_results["recall"].mean(),
pnorm_results["Error_L1"].mean(),
pnorm_results["RMS_noisy"].mean(),
pnorm_results["RMS_true"].mean()]
metrics = ["accuracy", "precision", "recall", "error", "RMS_noisy", "RMS_true"]
# create dataframe comparison
comparison_df = pd.DataFrame({"inftyNorm": inftyNorm_metrics,
"FCLS": FCLS_metrics,
"LASSO": LASSO_metrics,
"pnorm": pnrom_metrics},
index=metrics)
print(comparison_df)
comparison_df.to_csv(path + date + "_comparison%s.csv" % run_num)