-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtrk_mean_sc.m
50 lines (46 loc) · 2.13 KB
/
trk_mean_sc.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
function [scalar_mean,scalar_sd] = trk_mean_sc(header,tracks)
%TRK_MEAN_SC - Calculate the mean scalar along a track
%Returns the mean and SD of a scalar volume (e.g. FA map) *along* a track.
%Rather than collapsing across the whole track, as in TrackVis or TRK_STATS,
%this function returns vectors corresponding to the different vertices along the
%whole track. This will allow you to localize differences within a track.
%
% Syntax: [scalar_mean,scalar_sd] = trk_mean_sc(header,tracks)
%
% Inputs:
% header - Header information from .trk file [struc]
% tracks - Track data struc array [1 x nTracks]
%
% Outputs:
% scalar_mean - Mean of the scalar at each track point [nPoints x nScalars]
% scalar_sd - Standard deviation of the scalar at each track point
% [nPoints x nScalars]
%
% Example:
% exDir = '/path/to/along-tract-stats/example';
% subDir = fullfile(exDir, 'subject1');
% trkPath = fullfile(subDir, 'CST_L.trk');
% volPath = fullfile(subDir, 'dti_fa.nii.gz');
% volume = read_avw(volPath);
% [header tracks] = trk_read(trkPath);
% tracks_interp = trk_interp(tracks, 100);
% tracks_interp = trk_flip(header, tracks_interp, [97 110 4]);
% tracks_interp_str = trk_restruc(tracks_interp);
% [header_sc tracks_sc] = trk_add_sc(header, tracks_interp_str, volume, 'FA');
% [scalar_mean scalar_sd] = trk_mean_sc(header_sc, tracks_sc);
%
% Other m-files required: none
% Subfunctions: none
% MAT-files required: none
%
% See also: TRK_READ, READ_AVW, TRK_INTERP, TRK_RESTRUC, TRK_ADD_SC
% Author: John Colby (johncolby@ucla.edu)
% UCLA Developmental Cognitive Neuroimaging Group (Sowell Lab)
% Apr 2010
scalars = zeros(tracks(1).nPoints, header.n_count, header.n_scalars);
for i=1:header.n_scalars
mat_long = cat(1, tracks.matrix);
scalars(:,:,i) = reshape(mat_long(:,4), tracks(1).nPoints, header.n_count, header.n_scalars);
end
scalar_mean = squeeze(nanmean(scalars, 2));
scalar_sd = squeeze(nanstd(scalars, 0, 2));