-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathana_daily.py
100 lines (90 loc) · 3.93 KB
/
ana_daily.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import os
import pickle
import glob
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import AxesGrid
import numpy as np
import solar
def read_daily(filename):
data = solar.read_csv(filename)
times, power = [np.asarray([x[i] for x in data]) for i in [0, 2]]
if times[0] == times[12]:
times, power = times[12:], power[12:]
if times[0] == times[12]:
times, power = times[12:], power[12:]
opt_power, stray_power = solar.compute_powers(times, stray=True)
return times, power, opt_power, stray_power
if __name__ == "__main__":
fig = plt.figure()
grid = AxesGrid(fig, 111, # similar to subplot(142)
nrows_ncols=(4, 3),
axes_pad=0.1,
aspect=False,
share_all=True,
label_mode="L",
cbar_location="right",
cbar_mode="single",
cbar_size="2%",
cbar_pad="2%")
cache_file = "daily.pickle"
if os.path.exists(cache_file):
with open(cache_file, "rb") as pifi:
hours, powers, maxs, mins, straymean, max_time = pickle.load(pifi)
else:
hours = {}
powers = {}
maxs = {}
mins = {}
straymean = {}
straymean_cnt = {}
max_time = {}
for i in range(12):
hours[i] = []
powers[i] = []
maxs[i] = None
max_time[i] = np.arange(0, 24, 5 / 60)
for fn in sorted(glob.glob("*/MyPlant-202[23]????.csv")):
if fn in ["2019/MyPlant-20190331.csv"]:
continue
filetimes, filepowers, fileoptpowers, filestraypowers = read_daily(fn)
assert fileoptpowers.shape == filestraypowers.shape
print(f"{fn} {filepowers.sum():4.0f} {fileoptpowers.sum():4.0f}")
month = filetimes[0].month - 1
hours[month].extend([solar.second_of_day(_x) for _x in filetimes])
powers[month].extend(filepowers)
if maxs[month] is None:
maxs[month] = fileoptpowers
mins[month] = fileoptpowers
straymean[month] = filestraypowers
straymean_cnt[month] = 1
continue
assert fileoptpowers.shape == maxs[month].shape, \
(fileoptpowers.shape, maxs[month].shape)
assert (np.asarray(max_time[month][:len(fileoptpowers)]) -
np.asarray([solar.second_of_day(x) for x in filetimes])).sum() < 1e-4, \
(np.asarray(max_time[month][:len(fileoptpowers)]) - np.asarray([solar.second_of_day(x) for x in filetimes]))
maxs[month] = np.where(
maxs[month] > fileoptpowers, maxs[month], fileoptpowers)
mins[month] = np.where(
mins[month] < fileoptpowers, mins[month], fileoptpowers)
straymean[month] += filestraypowers
straymean_cnt[month] += 1
for month in straymean:
straymean[month] /= straymean_cnt[month]
with open(cache_file, "wb") as pifi:
pickle.dump((hours, powers, maxs, mins, straymean, max_time), pifi)
for i, month in enumerate(solar.months):
if len(powers[i]) > 0:
im = grid[i].hexbin(
hours[i], powers[i], cmap=plt.cm.gray_r,
vmax=8, extent=(0, 24, solar.MAX_POWER, 0), rasterized=True)
grid[i].plot(max_time[i][:len(maxs[i])], maxs[i], color="C1", zorder=100)
grid[i].plot(max_time[i][:len(mins[i])], mins[i], color="C1", zorder=100)
grid[i].plot(max_time[i][:len(straymean[i])], straymean[i], color="C0", zorder=100)
grid[i].set_xticks(np.arange(0, 25, 3))
grid[i].set_xlim(3, 21)
grid[i].set_ylim(0, 4)
grid[i].text(0.05, 0.85, month, ha="left", transform=grid[i].transAxes)
plt.colorbar(im, grid.cbar_axes[0], extend="max")
plt.savefig("daily.png")
plt.savefig("daily.pdf")