-
Notifications
You must be signed in to change notification settings - Fork 4.6k
/
Copy pathnlp.py
724 lines (550 loc) · 25.1 KB
/
nlp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
import matplotlib.pyplot as plt
plt.gca().clear()
data = [ ("big data", 100, 15), ("Hadoop", 95, 25), ("Python", 75, 50),
("R", 50, 40), ("machine learning", 80, 20), ("statistics", 20, 60),
("data science", 60, 70), ("analytics", 90, 3),
("team player", 85, 85), ("dynamic", 2, 90), ("synergies", 70, 0),
("actionable insights", 40, 30), ("think out of the box", 45, 10),
("self-starter", 30, 50), ("customer focus", 65, 15),
("thought leadership", 35, 35)]
from matplotlib import pyplot as plt
def fix_unicode(text: str) -> str:
return text.replace(u"\u2019", "'")
import re
from bs4 import BeautifulSoup
import requests
url = "https://www.oreilly.com/ideas/what-is-data-science"
html = requests.get(url).text
soup = BeautifulSoup(html, 'html5lib')
content = soup.find("div", "article-body") # find article-body div
regex = r"[\w']+|[\.]" # matches a word or a period
document = []
for paragraph in content("p"):
words = re.findall(regex, fix_unicode(paragraph.text))
document.extend(words)
from collections import defaultdict
transitions = defaultdict(list)
for prev, current in zip(document, document[1:]):
transitions[prev].append(current)
def generate_using_bigrams() -> str:
current = "." # this means the next word will start a sentence
result = []
while True:
next_word_candidates = transitions[current] # bigrams (current, _)
current = random.choice(next_word_candidates) # choose one at random
result.append(current) # append it to results
if current == ".": return " ".join(result) # if "." we're done
trigram_transitions = defaultdict(list)
starts = []
for prev, current, next in zip(document, document[1:], document[2:]):
if prev == ".": # if the previous "word" was a period
starts.append(current) # then this is a start word
trigram_transitions[(prev, current)].append(next)
def generate_using_trigrams() -> str:
current = random.choice(starts) # choose a random starting word
prev = "." # and precede it with a '.'
result = [current]
while True:
next_word_candidates = trigram_transitions[(prev, current)]
next_word = random.choice(next_word_candidates)
prev, current = current, next_word
result.append(current)
if current == ".":
return " ".join(result)
from typing import List, Dict
# Type alias to refer to grammars later
Grammar = Dict[str, List[str]]
grammar = {
"_S" : ["_NP _VP"],
"_NP" : ["_N",
"_A _NP _P _A _N"],
"_VP" : ["_V",
"_V _NP"],
"_N" : ["data science", "Python", "regression"],
"_A" : ["big", "linear", "logistic"],
"_P" : ["about", "near"],
"_V" : ["learns", "trains", "tests", "is"]
}
def is_terminal(token: str) -> bool:
return token[0] != "_"
def expand(grammar: Grammar, tokens: List[str]) -> List[str]:
for i, token in enumerate(tokens):
# If this is a terminal token, skip it.
if is_terminal(token): continue
# Otherwise, it's a non-terminal token,
# so we need to choose a replacement at random.
replacement = random.choice(grammar[token])
if is_terminal(replacement):
tokens[i] = replacement
else:
# Replacement could be e.g. "_NP _VP", so we need to
# split it on spaces and splice it in.
tokens = tokens[:i] + replacement.split() + tokens[(i+1):]
# Now call expand on the new list of tokens.
return expand(grammar, tokens)
# If we get here we had all terminals and are done
return tokens
def generate_sentence(grammar: Grammar) -> List[str]:
return expand(grammar, ["_S"])
from typing import Tuple
import random
def roll_a_die() -> int:
return random.choice([1, 2, 3, 4, 5, 6])
def direct_sample() -> Tuple[int, int]:
d1 = roll_a_die()
d2 = roll_a_die()
return d1, d1 + d2
def random_y_given_x(x: int) -> int:
"""equally likely to be x + 1, x + 2, ... , x + 6"""
return x + roll_a_die()
def random_x_given_y(y: int) -> int:
if y <= 7:
# if the total is 7 or less, the first die is equally likely to be
# 1, 2, ..., (total - 1)
return random.randrange(1, y)
else:
# if the total is 7 or more, the first die is equally likely to be
# (total - 6), (total - 5), ..., 6
return random.randrange(y - 6, 7)
def gibbs_sample(num_iters: int = 100) -> Tuple[int, int]:
x, y = 1, 2 # doesn't really matter
for _ in range(num_iters):
x = random_x_given_y(y)
y = random_y_given_x(x)
return x, y
def compare_distributions(num_samples: int = 1000) -> Dict[int, List[int]]:
counts = defaultdict(lambda: [0, 0])
for _ in range(num_samples):
counts[gibbs_sample()][0] += 1
counts[direct_sample()][1] += 1
return counts
def sample_from(weights: List[float]) -> int:
"""returns i with probability weights[i] / sum(weights)"""
total = sum(weights)
rnd = total * random.random() # uniform between 0 and total
for i, w in enumerate(weights):
rnd -= w # return the smallest i such that
if rnd <= 0: return i # weights[0] + ... + weights[i] >= rnd
from collections import Counter
# Draw 1000 times and count
draws = Counter(sample_from([0.1, 0.1, 0.8]) for _ in range(1000))
assert 10 < draws[0] < 190 # should be ~10%, this is a really loose test
assert 10 < draws[1] < 190 # should be ~10%, this is a really loose test
assert 650 < draws[2] < 950 # should be ~80%, this is a really loose test
assert draws[0] + draws[1] + draws[2] == 1000
documents = [
["Hadoop", "Big Data", "HBase", "Java", "Spark", "Storm", "Cassandra"],
["NoSQL", "MongoDB", "Cassandra", "HBase", "Postgres"],
["Python", "scikit-learn", "scipy", "numpy", "statsmodels", "pandas"],
["R", "Python", "statistics", "regression", "probability"],
["machine learning", "regression", "decision trees", "libsvm"],
["Python", "R", "Java", "C++", "Haskell", "programming languages"],
["statistics", "probability", "mathematics", "theory"],
["machine learning", "scikit-learn", "Mahout", "neural networks"],
["neural networks", "deep learning", "Big Data", "artificial intelligence"],
["Hadoop", "Java", "MapReduce", "Big Data"],
["statistics", "R", "statsmodels"],
["C++", "deep learning", "artificial intelligence", "probability"],
["pandas", "R", "Python"],
["databases", "HBase", "Postgres", "MySQL", "MongoDB"],
["libsvm", "regression", "support vector machines"]
]
K = 4
# a list of Counters, one for each document
document_topic_counts = [Counter() for _ in documents]
# a list of Counters, one for each topic
topic_word_counts = [Counter() for _ in range(K)]
# a list of numbers, one for each topic
topic_counts = [0 for _ in range(K)]
# a list of numbers, one for each document
document_lengths = [len(document) for document in documents]
distinct_words = set(word for document in documents for word in document)
W = len(distinct_words)
D = len(documents)
def p_topic_given_document(topic: int, d: int, alpha: float = 0.1) -> float:
"""
The fraction of words in document _d_
that are assigned to _topic_ (plus some smoothing)
"""
return ((document_topic_counts[d][topic] + alpha) /
(document_lengths[d] + K * alpha))
def p_word_given_topic(word: str, topic: int, beta: float = 0.1) -> float:
"""
The fraction of words assigned to _topic_
that equal _word_ (plus some smoothing)
"""
return ((topic_word_counts[topic][word] + beta) /
(topic_counts[topic] + W * beta))
def topic_weight(d: int, word: str, k: int) -> float:
"""
Given a document and a word in that document,
return the weight for the kth topic
"""
return p_word_given_topic(word, k) * p_topic_given_document(k, d)
def choose_new_topic(d: int, word: str) -> int:
return sample_from([topic_weight(d, word, k)
for k in range(K)])
random.seed(0)
document_topics = [[random.randrange(K) for word in document]
for document in documents]
for d in range(D):
for word, topic in zip(documents[d], document_topics[d]):
document_topic_counts[d][topic] += 1
topic_word_counts[topic][word] += 1
topic_counts[topic] += 1
import tqdm
for iter in tqdm.trange(1000):
for d in range(D):
for i, (word, topic) in enumerate(zip(documents[d],
document_topics[d])):
# remove this word / topic from the counts
# so that it doesn't influence the weights
document_topic_counts[d][topic] -= 1
topic_word_counts[topic][word] -= 1
topic_counts[topic] -= 1
document_lengths[d] -= 1
# choose a new topic based on the weights
new_topic = choose_new_topic(d, word)
document_topics[d][i] = new_topic
# and now add it back to the counts
document_topic_counts[d][new_topic] += 1
topic_word_counts[new_topic][word] += 1
topic_counts[new_topic] += 1
document_lengths[d] += 1
for k, word_counts in enumerate(topic_word_counts):
for word, count in word_counts.most_common():
if count > 0:
print(k, word, count)
topic_names = ["Big Data and programming languages",
"Python and statistics",
"databases",
"machine learning"]
for document, topic_counts in zip(documents, document_topic_counts):
print(document)
for topic, count in topic_counts.most_common():
if count > 0:
print(topic_names[topic], count)
print()
from scratch.linear_algebra import dot, Vector
import math
def cosine_similarity(v1: Vector, v2: Vector) -> float:
return dot(v1, v2) / math.sqrt(dot(v1, v1) * dot(v2, v2))
assert cosine_similarity([1., 1, 1], [2., 2, 2]) == 1, "same direction"
assert cosine_similarity([-1., -1], [2., 2]) == -1, "opposite direction"
assert cosine_similarity([1., 0], [0., 1]) == 0, "orthogonal"
colors = ["red", "green", "blue", "yellow", "black", ""]
nouns = ["bed", "car", "boat", "cat"]
verbs = ["is", "was", "seems"]
adverbs = ["very", "quite", "extremely", ""]
adjectives = ["slow", "fast", "soft", "hard"]
def make_sentence() -> str:
return " ".join([
"The",
random.choice(colors),
random.choice(nouns),
random.choice(verbs),
random.choice(adverbs),
random.choice(adjectives),
"."
])
NUM_SENTENCES = 50
random.seed(0)
sentences = [make_sentence() for _ in range(NUM_SENTENCES)]
from scratch.deep_learning import Tensor
class Vocabulary:
def __init__(self, words: List[str] = None) -> None:
self.w2i: Dict[str, int] = {} # mapping word -> word_id
self.i2w: Dict[int, str] = {} # mapping word_id -> word
for word in (words or []): # If words were provided,
self.add(word) # add them.
@property
def size(self) -> int:
"""how many words are in the vocabulary"""
return len(self.w2i)
def add(self, word: str) -> None:
if word not in self.w2i: # If the word is new to us:
word_id = len(self.w2i) # Find the next id.
self.w2i[word] = word_id # Add to the word -> word_id map.
self.i2w[word_id] = word # Add to the word_id -> word map.
def get_id(self, word: str) -> int:
"""return the id of the word (or None)"""
return self.w2i.get(word)
def get_word(self, word_id: int) -> str:
"""return the word with the given id (or None)"""
return self.i2w.get(word_id)
def one_hot_encode(self, word: str) -> Tensor:
word_id = self.get_id(word)
assert word_id is not None, f"unknown word {word}"
return [1.0 if i == word_id else 0.0 for i in range(self.size)]
vocab = Vocabulary(["a", "b", "c"])
assert vocab.size == 3, "there are 3 words in the vocab"
assert vocab.get_id("b") == 1, "b should have word_id 1"
assert vocab.one_hot_encode("b") == [0, 1, 0]
assert vocab.get_id("z") is None, "z is not in the vocab"
assert vocab.get_word(2) == "c", "word_id 2 should be c"
vocab.add("z")
assert vocab.size == 4, "now there are 4 words in the vocab"
assert vocab.get_id("z") == 3, "now z should have id 3"
assert vocab.one_hot_encode("z") == [0, 0, 0, 1]
import json
def save_vocab(vocab: Vocabulary, filename: str) -> None:
with open(filename, 'w') as f:
json.dump(vocab.w2i, f) # Only need to save w2i
def load_vocab(filename: str) -> Vocabulary:
vocab = Vocabulary()
with open(filename) as f:
# Load w2i and generate i2w from it.
vocab.w2i = json.load(f)
vocab.i2w = {id: word for word, id in vocab.w2i.items()}
return vocab
from typing import Iterable
from scratch.deep_learning import Layer, Tensor, random_tensor, zeros_like
class Embedding(Layer):
def __init__(self, num_embeddings: int, embedding_dim: int) -> None:
self.num_embeddings = num_embeddings
self.embedding_dim = embedding_dim
# One vector of size embedding_dim for each desired embedding
self.embeddings = random_tensor(num_embeddings, embedding_dim)
self.grad = zeros_like(self.embeddings)
# Save last input id
self.last_input_id = None
def forward(self, input_id: int) -> Tensor:
"""Just select the embedding vector corresponding to the input id"""
self.input_id = input_id # remember for use in backpropagation
return self.embeddings[input_id]
def backward(self, gradient: Tensor) -> None:
# Zero out the gradient corresponding to the last input.
# This is way cheaper than creating a new all-zero tensor each time.
if self.last_input_id is not None:
zero_row = [0 for _ in range(self.embedding_dim)]
self.grad[self.last_input_id] = zero_row
self.last_input_id = self.input_id
self.grad[self.input_id] = gradient
def params(self) -> Iterable[Tensor]:
return [self.embeddings]
def grads(self) -> Iterable[Tensor]:
return [self.grad]
class TextEmbedding(Embedding):
def __init__(self, vocab: Vocabulary, embedding_dim: int) -> None:
# Call the superclass constructor
super().__init__(vocab.size, embedding_dim)
# And hang onto the vocab
self.vocab = vocab
def __getitem__(self, word: str) -> Tensor:
word_id = self.vocab.get_id(word)
if word_id is not None:
return self.embeddings[word_id]
else:
return None
def closest(self, word: str, n: int = 5) -> List[Tuple[float, str]]:
"""Returns the n closest words based on cosine similarity"""
vector = self[word]
# Compute pairs (similarity, other_word), and sort most similar first
scores = [(cosine_similarity(vector, self.embeddings[i]), other_word)
for other_word, i in self.vocab.w2i.items()]
scores.sort(reverse=True)
return scores[:n]
from scratch.deep_learning import tensor_apply, tanh
class SimpleRnn(Layer):
"""Just about the simplest possible recurrent layer."""
def __init__(self, input_dim: int, hidden_dim: int) -> None:
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.w = random_tensor(hidden_dim, input_dim, init='xavier')
self.u = random_tensor(hidden_dim, hidden_dim, init='xavier')
self.b = random_tensor(hidden_dim)
self.reset_hidden_state()
def reset_hidden_state(self) -> None:
self.hidden = [0 for _ in range(self.hidden_dim)]
def forward(self, input: Tensor) -> Tensor:
self.input = input # Save both input and previous
self.prev_hidden = self.hidden # hidden state to use in backprop.
a = [(dot(self.w[h], input) + # weights @ input
dot(self.u[h], self.hidden) + # weights @ hidden
self.b[h]) # bias
for h in range(self.hidden_dim)]
self.hidden = tensor_apply(tanh, a) # Apply tanh activation
return self.hidden # and return the result.
def backward(self, gradient: Tensor):
# Backpropagate through the tanh
a_grad = [gradient[h] * (1 - self.hidden[h] ** 2)
for h in range(self.hidden_dim)]
# b has the same gradient as a
self.b_grad = a_grad
# Each w[h][i] is multiplied by input[i] and added to a[h],
# so each w_grad[h][i] = a_grad[h] * input[i]
self.w_grad = [[a_grad[h] * self.input[i]
for i in range(self.input_dim)]
for h in range(self.hidden_dim)]
# Each u[h][h2] is multiplied by hidden[h2] and added to a[h],
# so each u_grad[h][h2] = a_grad[h] * prev_hidden[h2]
self.u_grad = [[a_grad[h] * self.prev_hidden[h2]
for h2 in range(self.hidden_dim)]
for h in range(self.hidden_dim)]
# Each input[i] is multiplied by every w[h][i] and added to a[h],
# so each input_grad[i] = sum(a_grad[h] * w[h][i] for h in ...)
return [sum(a_grad[h] * self.w[h][i] for h in range(self.hidden_dim))
for i in range(self.input_dim)]
def params(self) -> Iterable[Tensor]:
return [self.w, self.u, self.b]
def grads(self) -> Iterable[Tensor]:
return [self.w_grad, self.u_grad, self.b_grad]
def main():
from matplotlib import pyplot as plt
def text_size(total: int) -> float:
"""equals 8 if total is 0, 28 if total is 200"""
return 8 + total / 200 * 20
for word, job_popularity, resume_popularity in data:
plt.text(job_popularity, resume_popularity, word,
ha='center', va='center',
size=text_size(job_popularity + resume_popularity))
plt.xlabel("Popularity on Job Postings")
plt.ylabel("Popularity on Resumes")
plt.axis([0, 100, 0, 100])
plt.xticks([])
plt.yticks([])
# plt.show()
plt.close()
import re
# This is not a great regex, but it works on our data.
tokenized_sentences = [re.findall("[a-z]+|[.]", sentence.lower())
for sentence in sentences]
# Create a vocabulary (that is, a mapping word -> word_id) based on our text.
vocab = Vocabulary(word
for sentence_words in tokenized_sentences
for word in sentence_words)
from scratch.deep_learning import Tensor, one_hot_encode
inputs: List[int] = []
targets: List[Tensor] = []
for sentence in tokenized_sentences:
for i, word in enumerate(sentence): # For each word
for j in [i - 2, i - 1, i + 1, i + 2]: # take the nearby locations
if 0 <= j < len(sentence): # that aren't out of bounds
nearby_word = sentence[j] # and get those words.
# Add an input that's the original word_id
inputs.append(vocab.get_id(word))
# Add a target that's the one-hot-encoded nearby word
targets.append(vocab.one_hot_encode(nearby_word))
# Model for learning word vectors
from scratch.deep_learning import Sequential, Linear
random.seed(0)
EMBEDDING_DIM = 5 # seems like a good size
# Define the embedding layer separately, so we can reference it.
embedding = TextEmbedding(vocab=vocab, embedding_dim=EMBEDDING_DIM)
model = Sequential([
# Given a word (as a vector of word_ids), look up its embedding.
embedding,
# And use a linear layer to compute scores for "nearby words".
Linear(input_dim=EMBEDDING_DIM, output_dim=vocab.size)
])
# Train the word vector model
from scratch.deep_learning import SoftmaxCrossEntropy, Momentum, GradientDescent
loss = SoftmaxCrossEntropy()
optimizer = GradientDescent(learning_rate=0.01)
for epoch in range(100):
epoch_loss = 0.0
for input, target in zip(inputs, targets):
predicted = model.forward(input)
epoch_loss += loss.loss(predicted, target)
gradient = loss.gradient(predicted, target)
model.backward(gradient)
optimizer.step(model)
print(epoch, epoch_loss) # Print the loss
print(embedding.closest("black")) # and also a few nearest words
print(embedding.closest("slow")) # so we can see what's being
print(embedding.closest("car")) # learned.
# Explore most similar words
pairs = [(cosine_similarity(embedding[w1], embedding[w2]), w1, w2)
for w1 in vocab.w2i
for w2 in vocab.w2i
if w1 < w2]
pairs.sort(reverse=True)
print(pairs[:5])
# Plot word vectors
plt.close()
from scratch.working_with_data import pca, transform
import matplotlib.pyplot as plt
# Extract the first two principal components and transform the word vectors
components = pca(embedding.embeddings, 2)
transformed = transform(embedding.embeddings, components)
# Scatter the points (and make them white so they're "invisible")
fig, ax = plt.subplots()
ax.scatter(*zip(*transformed), marker='.', color='w')
# Add annotations for each word at its transformed location
for word, idx in vocab.w2i.items():
ax.annotate(word, transformed[idx])
# And hide the axes
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
# plt.show()
plt.savefig('im/word_vectors')
plt.gca().clear()
plt.close()
from bs4 import BeautifulSoup
import requests
url = "https://www.ycombinator.com/topcompanies/"
soup = BeautifulSoup(requests.get(url).text, 'html5lib')
# We get the companies twice, so use a set comprehension to deduplicate.
companies = list({b.text
for b in soup("b")
if "h4" in b.get("class", ())})
assert len(companies) == 101
vocab = Vocabulary([c for company in companies for c in company])
START = "^"
STOP = "$"
# We need to add them to the vocabulary too.
vocab.add(START)
vocab.add(STOP)
HIDDEN_DIM = 32 # You should experiment with different sizes!
rnn1 = SimpleRnn(input_dim=vocab.size, hidden_dim=HIDDEN_DIM)
rnn2 = SimpleRnn(input_dim=HIDDEN_DIM, hidden_dim=HIDDEN_DIM)
linear = Linear(input_dim=HIDDEN_DIM, output_dim=vocab.size)
model = Sequential([
rnn1,
rnn2,
linear
])
from scratch.deep_learning import softmax
def generate(seed: str = START, max_len: int = 50) -> str:
rnn1.reset_hidden_state() # Reset both hidden states.
rnn2.reset_hidden_state()
output = [seed] # Start the output with the specified seed.
# Keep going until we produce the STOP character or reach the max length
while output[-1] != STOP and len(output) < max_len:
# Use the last character as the input
input = vocab.one_hot_encode(output[-1])
# Generate scores using the model
predicted = model.forward(input)
# Convert them to probabilities and draw a random char_id
probabilities = softmax(predicted)
next_char_id = sample_from(probabilities)
# Add the corresponding char to our output
output.append(vocab.get_word(next_char_id))
# Get rid of START and END characters and return the word.
return ''.join(output[1:-1])
loss = SoftmaxCrossEntropy()
optimizer = Momentum(learning_rate=0.01, momentum=0.9)
for epoch in range(300):
random.shuffle(companies) # Train in a different order each epoch.
epoch_loss = 0 # Track the loss.
for company in tqdm.tqdm(companies):
rnn1.reset_hidden_state() # Reset both hidden states.
rnn2.reset_hidden_state()
company = START + company + STOP # Add START and STOP characters.
# The rest is just our usual training loop, except that the inputs
# and target are the one-hot-encoded previous and next characters.
for prev, next in zip(company, company[1:]):
input = vocab.one_hot_encode(prev)
target = vocab.one_hot_encode(next)
predicted = model.forward(input)
epoch_loss += loss.loss(predicted, target)
gradient = loss.gradient(predicted, target)
model.backward(gradient)
optimizer.step(model)
# Each epoch print the loss and also generate a name
print(epoch, epoch_loss, generate())
# Turn down the learning rate for the last 100 epochs.
# There's no principled reason for this, but it seems to work.
if epoch == 200:
optimizer.lr *= 0.1
if __name__ == "__main__": main()