-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsemisup.py
356 lines (275 loc) · 15.1 KB
/
semisup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import argparse
import logging
import os
import pprint
import random
import numpy as np
import torch
from torch import nn
import torch.backends.cudnn as cudnn
from torch.optim import SGD
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import torch.distributed as dist
from torch.optim import lr_scheduler
import yaml
from dataset.semi import SemiDataset, SemiDataset_collate_fn
from model.semseg.deeplabv3plus import DeepLabV3Plus
from supervised import evaluate
from util.classes import CLASSES
from util.ohem import ProbOhemCrossEntropy2d
from util.utils import count_params, init_log, AverageMeter
from util.dist_helper import setup_distributed
from mlsd_pytorch.metric import F1_score_128, TPFP, msTPFP, AP
from mlsd_pytorch.utils.decode import deccode_lines_TP
from mlsd_pytorch.data import get_train_dataloader, get_val_dataloader
from mlsd_pytorch.cfg.default import get_cfg_defaults
from mlsd_pytorch.loss import LineSegmentLoss
import tqdm
from mlsd_pytorch.models.build_model import build_model
parser = argparse.ArgumentParser(description='Revisiting Weak-to-Strong Consistency in Semi-Supervised Semantic Segmentation')
parser.add_argument('--labeled-id-path', type=str, required=True)
parser.add_argument('--unlabeled-id-path', type=str, required=True)
parser.add_argument('--save-path', type=str, required=True)
parser.add_argument('--local_rank', default=0, type=int)
parser.add_argument('--port', default=None, type=int)
parser.add_argument('--config', type=str, required=True)
parser.add_argument('--prev_best', type=str, default='', required=False)
parser.add_argument('--is_wireframe', type=bool, default=False, required=False)
__mapping_dataset_collate_fn = {
'wireframe': SemiDataset_collate_fn,
}
def get_collate_fn(cfg):
if cfg.datasets.name not in __mapping_dataset_collate_fn.keys():
raise NotImplementedError('Dataset Type not supported!')
return __mapping_dataset_collate_fn[cfg.datasets.name]
def count_true(matrix):
true_count = 0
for row in matrix:
for element in row:
if element: # Check if element is True
true_count += 1
return true_count
def main():
args = parser.parse_args()
cfg = get_cfg_defaults()
if args.config.endswith('\r'):
args.config = args.config[:-1]
cfg.merge_from_file(args.config)
loss_fn = LineSegmentLoss(cfg)
logger = init_log('global', logging.INFO)
logger.propagate = 0
# rank, world_size = setup_distributed(port=args.port)
rank = int(os.environ["RANK"])
world_size = int(os.environ["WORLD_SIZE"])
dist.init_process_group(
backend="gloo",
world_size=world_size,
rank=rank,
)
torch.cuda.set_device(rank)
if rank == 0:
all_args = {**cfg, **vars(args), 'ngpus': world_size}
#logger.info('{}\n'.format(pprint.pformat(all_args)))
writer = SummaryWriter(args.save_path)
os.makedirs(args.save_path, exist_ok=True)
cudnn.enabled = True
cudnn.benchmark = True
#model = DeepLabV3Plus(cfg)
model = build_model(cfg).cuda()
if os.path.exists(cfg.train.load_from):
print('load from: ', cfg.train.load_from)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.load_state_dict(torch.load(cfg.train.load_from, map_location=device), strict=False)
optimizer = torch.optim.Adam(params=model.parameters(), lr=cfg.train.learning_rate,
weight_decay=cfg.train.weight_decay)
# scheduler = lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.9)
if rank == 0:
logger.info('Total params: {:.1f}M\n'.format(count_params(model)))
local_rank = int(os.environ["LOCAL_RANK"])
# model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
# model.cuda()
criterion_u = nn.CrossEntropyLoss(reduction='none').cuda(local_rank)
trainset_u = SemiDataset(cfg, 'train_u', args.unlabeled_id_path)
trainset_l = SemiDataset(cfg, 'train_l', args.labeled_id_path, nsample=len(trainset_u.ids))
valset = SemiDataset(cfg, 'val', is_train=False)
trainsampler_l = torch.utils.data.distributed.DistributedSampler(trainset_l)
trainloader_l = DataLoader(trainset_l, cfg.train.batch_size,
pin_memory=True, num_workers=4, drop_last=True, sampler=trainsampler_l,
collate_fn=get_collate_fn(cfg))
trainsampler_u = torch.utils.data.distributed.DistributedSampler(trainset_u)
trainloader_u = DataLoader(trainset_u, batch_size=cfg.train.batch_size,
pin_memory=True, num_workers=4, drop_last=True, sampler=trainsampler_u)
valsampler = torch.utils.data.distributed.DistributedSampler(valset)
valloader = DataLoader(valset, batch_size=1, pin_memory=True, num_workers=1,
drop_last=False, sampler=valsampler, collate_fn=get_collate_fn(cfg))
# mlsd_train_loader = get_train_dataloader(cfg)
# mlsd_val_loader = get_val_dataloader(cfg)
previous_best = 0.0
prev_sAP = 0.0
epoch = -1
best_epoch = 0
if os.path.exists(os.path.join(args.save_path, 'latest.pth')):
checkpoint = torch.load(os.path.join(args.save_path, 'latest.pth'))
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
epoch = checkpoint['epoch']
previous_best = checkpoint['previous_best']
prev_sAP = checkpoint['previous_sAP']
best_epoch = checkpoint['best_epoch']
if rank == 0:
logger.info('************ Load from checkpoint at epoch %i\n' % epoch)
elif args.prev_best:
print(args.prev_best)
checkpoint = torch.load(os.path.join(args.prev_best, 'best_sAP.pth'))
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
if rank == 0:
logger.info('****** Load pretrained weights ******')
model_org = model
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[local_rank], broadcast_buffers=False,
output_device=local_rank, find_unused_parameters=False)
for epoch in range(epoch + 1, cfg.train.num_train_epochs):
if rank == 0:
logger.info('===========> Epoch: {:}, LR: {:.5f}, Previous best fscore: {:.2f}, Previous sAP10: {:.2f}, epoch: '
'{:.2f}'.format(epoch, optimizer.param_groups[0]['lr'], previous_best, prev_sAP, best_epoch))
total_loss = AverageMeter()
total_loss_x = AverageMeter()
total_loss_s = AverageMeter()
total_loss_w_fp = AverageMeter()
total_mask_ratio = AverageMeter()
train_avg_loss = AverageMeter()
train_avg_center_loss = AverageMeter()
train_avg_replacement_loss = AverageMeter()
train_avg_line_seg_loss = AverageMeter()
train_avg_junc_seg_loss = AverageMeter()
train_avg_match_loss = AverageMeter()
train_avg_match_ratio = AverageMeter()
trainloader_l.sampler.set_epoch(epoch)
trainloader_u.sampler.set_epoch(epoch)
loader = zip(trainloader_l, trainloader_u, trainloader_u)
for i, (batch,
(img_u_w, img_u_s1, img_u_s2, ignore_mask, cutmix_box1, cutmix_box2),
(img_u_w_mix, img_u_s1_mix, img_u_s2_mix, ignore_mask_mix, _, _)) in enumerate(loader):
imgs = batch["xs"].cuda()
label = batch["ys"].cuda()
img_u_w = img_u_w.cuda()
img_u_s1, img_u_s2, ignore_mask = img_u_s1.cuda(), img_u_s2.cuda(), ignore_mask.cuda()
cutmix_box1, cutmix_box2 = cutmix_box1.cuda(), cutmix_box2.cuda()
img_u_w_mix = img_u_w_mix.cuda()
img_u_s1_mix, img_u_s2_mix = img_u_s1_mix.cuda(), img_u_s2_mix.cuda()
ignore_mask_mix = ignore_mask_mix.cuda()
# if i % 100 == 0:
# os.system("nvidia-smi")
with torch.no_grad():
model.eval()
pred_u_w_mix = model(img_u_w_mix).detach()
# conf_u_w_mix = pred_u_w_mix.softmax(dim=1).max(dim=1)[0]
conf_u_w_mix = pred_u_w_mix.softmax(dim=1)
# mask_u_w_mix = pred_u_w_mix.argmax(dim=1)
mask_u_w_mix = pred_u_w_mix
img_u_s1[cutmix_box1.unsqueeze(1).expand(img_u_s1.shape) == 1] = \
img_u_s1_mix[cutmix_box1.unsqueeze(1).expand(img_u_s1.shape) == 1]
img_u_s2[cutmix_box2.unsqueeze(1).expand(img_u_s2.shape) == 1] = \
img_u_s2_mix[cutmix_box2.unsqueeze(1).expand(img_u_s2.shape) == 1]
model.train()
num_lb, num_ulb = imgs.shape[0], img_u_w.shape[0]
# preds, preds_fp = model(torch.cat((imgs, img_u_w)), True)
preds = model(torch.cat((imgs, img_u_w)))
pred_x, pred_u_w = preds.split([num_lb, num_ulb])
# pred_u_w_fp = preds_fp[num_lb:]
pred_u_s1, pred_u_s2 = model(torch.cat((img_u_s1, img_u_s2))).chunk(2)
pred_u_w = pred_u_w.detach()
conf_u_w_old = pred_u_w[:, 7:8, :, :].softmax(dim=1).max(dim=1)[0]
conf_u_w = pred_u_w.softmax(dim=1)
# mask_u_w = pred_u_w.argmax(dim=1)
mask_u_w = pred_u_w
# FULHACK
# cutmix_box1, cutmix_box2 = cutmix_box1.expand(cfg.train.batch_size, 16, 512, 512), cutmix_box2.expand(cfg.train.batch_size, 16, 512, 512)
cutmix_box1, cutmix_box2 = cutmix_box1.unsqueeze(1).repeat(1, 16, 1, 1), cutmix_box2.unsqueeze(1).repeat(
1, 16, 1, 1)
ignore_mask_mix = ignore_mask_mix.unsqueeze(1).repeat(1, 16, 1, 1)
ignore_mask = ignore_mask.unsqueeze(1).repeat(1, 16, 1, 1)
mask_u_w_cutmixed1, conf_u_w_cutmixed1, ignore_mask_cutmixed1 = \
mask_u_w.clone(), conf_u_w.clone(), ignore_mask.clone()
mask_u_w_cutmixed2, conf_u_w_cutmixed2, ignore_mask_cutmixed2 = \
mask_u_w.clone(), conf_u_w.clone(), ignore_mask.clone()
mask_u_w_cutmixed1[cutmix_box1[:, :, ::2, ::2] == 1] = mask_u_w_mix[cutmix_box1[:, :, ::2, ::2] == 1]
conf_u_w_cutmixed1[cutmix_box1[:, :, ::2, ::2] == 1] = conf_u_w_mix[cutmix_box1[:, :, ::2, ::2] == 1]
ignore_mask_cutmixed1[cutmix_box1[:, :, :, :] == 1] = ignore_mask_mix[cutmix_box1[:, :, :, :] == 1]
mask_u_w_cutmixed2[cutmix_box2[:, :, ::2, ::2] == 1] = mask_u_w_mix[cutmix_box2[:, :, ::2, ::2] == 1]
conf_u_w_cutmixed2[cutmix_box2[:, :, ::2, ::2] == 1] = conf_u_w_mix[cutmix_box2[:, :, ::2, ::2] == 1]
ignore_mask_cutmixed2[cutmix_box2[:, :, :, :] == 1] = ignore_mask_mix[cutmix_box2[:, :, :, :] == 1]
loss_dict = loss_fn(pred_x, label, batch["gt_lines_tensor_512_list"],
batch["sol_lines_512_all_tensor_list"])
loss_x = loss_dict['loss']
ignore_mask_cutmixed1 = ignore_mask_cutmixed1[:, :, ::2, ::2]
loss_u_s1 = abs(criterion_u(pred_u_s1, mask_u_w_cutmixed1))
loss_u_s1 = loss_u_s1 * (conf_u_w_old >= cfg.unimatch.conf_thresh)
loss_u_s1 = loss_u_s1.sum() / (16.0 * cfg.train.batch_size * (conf_u_w_old >= cfg.unimatch.conf_thresh).sum().item())
ignore_mask_cutmixed2 = ignore_mask_cutmixed2[:, :, ::2, ::2]
loss_u_s2 = abs(criterion_u(pred_u_s2, mask_u_w_cutmixed2))
loss_u_s2 = loss_u_s2 * (conf_u_w_old >= cfg.unimatch.conf_thresh)
loss_u_s2 = loss_u_s2.sum() / (16.0 * cfg.train.batch_size * (conf_u_w_old >= cfg.unimatch.conf_thresh).sum().item())
# loss_u_w_fp = loss_fn(pred_u_w_fp, mask_u_w, batch["gt_lines_tensor_512_list"], batch["sol_lines_512_all_tensor_list"])
# loss_u_w_fp = loss_u_w_fp['loss']
loss = (loss_x * 9.0 + loss_u_s1 * 0.5 + loss_u_s2 * 0.5) / 10.0
torch.distributed.barrier()
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss.update(loss.item())
total_loss_x.update(loss_x.item())
total_loss_s.update((loss_u_s1.item() + loss_u_s2.item()) / 2.0)
# total_loss_w_fp.update(loss_u_w_fp.item())
train_avg_loss.update(loss.item(), 1)
train_avg_center_loss.update(loss_dict['center_loss'].item(), 1)
train_avg_replacement_loss.update(loss_dict['displacement_loss'].item(), 1)
train_avg_line_seg_loss.update(loss_dict['line_seg_loss'].item(), 1)
train_avg_junc_seg_loss.update(loss_dict['junc_seg_loss'].item(), 1)
train_avg_match_loss.update(float(loss_dict['match_loss']), 1)
train_avg_match_ratio.update(loss_dict['match_ratio'], 1)
mask_ratio = ((conf_u_w >= cfg.unimatch.conf_thresh) & (ignore_mask[:, :, ::2, ::2] != 255)).sum().item() / \
(ignore_mask != 255).sum()
total_mask_ratio.update(mask_ratio.item())
iters = epoch * len(trainloader_u) + i
if rank == 0:
writer.add_scalar('train/loss_all', loss.item(), iters)
# writer.add_scalar('train/loss_x', loss_x.item(), iters)
# writer.add_scalar('train/loss_s', (loss_u_s1.item() + loss_u_s2.item()) / 2.0, iters)
# writer.add_scalar('train/loss_w_fp', loss_u_w_fp.item(), iters)
writer.add_scalar('train/mask_ratio', mask_ratio, iters)
if len(trainloader_u) > 0 and (i % max(1, (len(trainloader_u) // 8)) == 0) and (rank == 0):
logger.info(
'Iters: {:}, Total loss: {:.3f}, Loss x: {:.3f}, Loss s: {:.3f}, Mask ratio: '
'{:.3f}, avg = {:.3f}, c: {:.3f}, d: {:.3f}, l: {:.3f}, '
'junc:{:.3f}, m:{:.3f}, m_r:{:.2f} '.format(i, total_loss.avg, total_loss_x.avg, total_loss_s.avg,
total_mask_ratio.avg, train_avg_loss.avg, train_avg_center_loss.avg, train_avg_replacement_loss.avg,
train_avg_line_seg_loss.avg, train_avg_junc_seg_loss.avg, train_avg_match_loss.avg,
train_avg_match_ratio.avg))
m = evaluate(model, valloader, cfg, epoch, logger, rank, is_wireframe=args.is_wireframe)
fscore = m['fscore']
sAP = m["sAP10"]
is_best = fscore > previous_best
is_best_sAP = sAP > prev_sAP
previous_best = max(fscore, previous_best)
prev_sAP = max(sAP, prev_sAP)
if rank == 0:
checkpoint = {
'model': model_org.state_dict(),
'optimizer': optimizer.state_dict(),
'epoch': epoch,
'best_epoch': best_epoch,
'previous_best': previous_best,
'previous_sAP': prev_sAP,
}
torch.save(checkpoint, os.path.join(args.save_path, 'latest.pth'))
if is_best:
torch.save(checkpoint, os.path.join(args.save_path, 'best.pth'))
if is_best_sAP:
best_epoch = epoch
torch.save(checkpoint, os.path.join(args.save_path, 'best_sAP.pth'))
# scheduler.step()
if __name__ == '__main__':
torch.cuda.empty_cache()
main()