-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathWH_control_fleet_2_weighting.py
631 lines (547 loc) · 31.7 KB
/
WH_control_fleet_2_weighting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
# -*- coding: utf-8 -*-
"""
Created on Wed Oct 25 10:28:48 2017
creating and controlling a fleet of water heaters
@author: chuck booten, jeff maguire, xin jin
"""
# depending on the IDE used these libraries might need to be imported manually
import numpy as np
import os
import matplotlib.pyplot as plt
import random
# this is the actual water heater model
from draft_wh_1_adv_availability_forecasting import WaterHeater
def main():
numWH = 300 #number of water heaters to be simulated to represent the entire fleet
Fleet_size_represented = max(numWH, 1e5)#size of the fleet that is represented by numWH
Steps = 10 #num steps in simulation
lengthRegulation = 90# num of 4-second steps for regulation signal
addshedTimestep = 10 #minutes, NOTE, MUST BE A DIVISOR OF 60. Acceptable numbers are: 1,2,3,4,5,6,10,12,15,20,30, 60
MaxNumAnnualConditions = 20 #max # of annual conditions to calculate, if more WHs than this just reuse some of the conditions and water draw profiles
TtankInitialMean = 125 #deg F
TtankInitialStddev = 5 #deg F
TsetInitialMean = 125 #deg F
TsetInitialStddev = 5 #deg F
minSOC = 0.2 # minimum SoC for aggregator to call for shed service
maxSOC = 0.8 # minimum SoC for aggregator to call for add service
minCapacityAdd = 350 #W-hr, minimum add capacity to be eligible for add service
minCapacityShed = 150 #W-hr, minimum shed capacity to be eligible for shed service
# for capacity, type, location and max. number of service calls need to specify discrete values and randomly sample to get a desired distribution
CapacityMasterList = [50,50,50,50,50,50,50,50,40,40,80] #70% 50 gal, 20% 40 gal, 10% 80 gal
TypeMasterList = ['ER','ER','ER','ER','ER','ER','ER','ER','ER','HP'] #elec_resis 90% and HPWH 10%
LocationMasterList =['living','living','living','living','unfinished basement'] #80% living, 20% unfinished basement for now
MaxServiceCallMasterList = [100,80,80, 200, 150, 110, 50, 75, 100] # this is the max number of annual service calls for load add/shed.
########################################################################
#generate load request signal and regulation
# NOTE: code is set up to deal with capacity separately from regulation, the only interface is in the capacity signal there is a single timestep
# where regulation is called, the entire code switches into regulation mode for that single timestep (which is much longer than a regulation timestep)
# when the calculations are complete, it returns conditions to be used for subsequent capacity timesteps
fleet_load_request = []
fleet_load_request_total = []
for step in range(Steps):
capacity_needed = 1e6 + 2e5*random.random()#Watts needed, >0 is capacity add, <0 is capacity shed
# Fleet_size_represented = capacity_needed/4500 # approximately how many WH would be needed to be able to provide this capacity
magnitude_load_add_shed = capacity_needed/Fleet_size_represented #def magnitude of request for load add/shed
if step % 12 == 0 or step % 12 == 1 or step % 12 == 2: # this is my aribtrary but not random way of creating load add/shed events. should be replaced with a more realistic signal at some point
if step > 1:
service = ['load shed',-magnitude_load_add_shed]
s = -magnitude_load_add_shed * numWH / 1
else:
service = ['none',0]
s=0
elif step % 7 == 0 or step % 7 == 1:
service = ['load add',magnitude_load_add_shed]
s = magnitude_load_add_shed * numWH / 1
elif step == 4000: #minutely regulation service. NOTE: THIS IS THE STARTING STEP FOR REGULATION SERVICE
service = ['regulation',0]
else:
service = ['none',0]
s=0
# NOTE: the load request signal has two components, the string component (load add, shed or regulation) and the numerical component, not sure if this will ultimately be necessary
fleet_load_request_total.append(s)
fleet_load_request.append(service)
# define regulation request separately since timescale is very different, have a 1hr schedule that will be repeated every time it is called
fleet_regulation_request = []
fleet_regulation_request_magnitude = []
for second in range(lengthRegulation):
#def magnitude of request for regulation
magnitude_regulation = 5e2 + 2e3*random.uniform(-1,1)
service =['regulation',magnitude_regulation]
fleet_regulation_request.append(service)
fleet_regulation_request_magnitude.append(magnitude_regulation)
#############################################################################
# generate distribution of initial WH fleet states. this means Ttank, Tset, capacity, location (cond/uncond), type (elec resis or HPWH).
# autogenerate water draw profile for the yr for each WH in fleet, this will be imported later, just get something reasonable here
TtankInitial=np.random.normal(TtankInitialMean, TtankInitialStddev,numWH)
TsetInitial=np.random.normal(TsetInitialMean, TsetInitialStddev,numWH)
Capacity = [random.choice(CapacityMasterList) for n in range(numWH)]
Capacity_fleet_ave = sum(Capacity)/numWH
Type = [random.choice(TypeMasterList) for n in range(numWH)]
Location = [random.choice(LocationMasterList) for n in range(numWH)]
MaxServiceCalls = [random.choice(MaxServiceCallMasterList) for n in range(numWH)]
#for calculating annual conditions
climate_location = 'Denver' # only allowable climate for now since the pre-run water draw profile generator has only been run for this climate
# 10 different profiles for each number of bedrooms
# bedrooms can be 1-5
# gives 50 different draw profiles
# can shift profiles by 0-364 days
# gives 365*50 = 18250 different water draw profiles for each climate
Tamb = []
RHamb = []
Tmains = []
hot_draw =[]
mixed_draw = []
draw = []
for a in range(numWH):
if a <= (MaxNumAnnualConditions-1): #if numWH > MaxNumAnnualConditions just start reusing older conditions to save computational time
numbeds = random.randint(1, 5)
shift = random.randint(0, 364)
unit = random.randint(0, 9)
(tamb, rhamb, tmains, hotdraw, mixeddraw) = get_annual_conditions(climate_location, Location[a], shift, numbeds, unit, addshedTimestep)
Tamb.append(tamb)
RHamb.append(rhamb)
Tmains.append(tmains)
hot_draw.append(hotdraw)
mixed_draw.append(mixeddraw)
draw.append(hotdraw + 0.3 * mixeddraw)#0.3 is so you don't need to know the exact hot/cold mixture for mixed draws, just assume 1/2 is hot and 1/2 is cold
else: #start re-using conditions
Tamb.append(Tamb[a-MaxNumAnnualConditions][:])
RHamb.append(RHamb[a-MaxNumAnnualConditions][:])
Tmains.append(Tmains[a-MaxNumAnnualConditions][:])
hot_draw.append(hot_draw[a-MaxNumAnnualConditions][:])
mixed_draw.append(mixed_draw[a-MaxNumAnnualConditions][:])
draw.append(hot_draw[a-MaxNumAnnualConditions][:] + 0.3 * mixed_draw[a-MaxNumAnnualConditions][:])
draw_fleet = sum(draw)# this sums all rows, where each row is a WH, so gives the fleet sum of hot draw at each step
draw_fleet_ave = draw_fleet/numWH # this averages all rows, where each row is a WH, so gives the fleet average of hot draw at each step
# plt.figure(19)
# plt.clf()
## plt.plot(hot_draw_fleet[0:200], 'k<-', label = 'hot')
# plt.plot(draw_fleet_ave[0:200], 'ro-',label = 'ave draw')
# plt.ylabel('Hot draw fleet [gal/step]')
# plt.legend()
# plt.xlabel('step')
###########################################################################
##################################
# Initializing lists to be saved to track indivisual water heater performance over each timestep
Tset = [[0 for x in range(Steps)] for y in range(numWH)]
Ttank = [[0 for x in range(Steps)] for y in range(numWH)]
dTtank_set = [[0 for x in range(Steps)] for y in range(numWH)]
SoC = [[0 for x in range(Steps)] for y in range(numWH)]
AvailableCapacityAdd = [[0 for x in range(Steps)] for y in range(numWH)]
AvailableCapacityShed = [[0 for x in range(Steps)] for y in range(numWH)]
ServiceCallsAccepted = [[0 for x in range(Steps)] for y in range(numWH)]
ServiceProvided = [[0 for x in range(Steps)] for y in range(numWH)]
IsAvailableAdd = [[0 for x in range(Steps)] for y in range(numWH)]
IsAvailableShed = [[0 for x in range(Steps)] for y in range(numWH)]
elementOn = [[0 for x in range(Steps)] for y in range(numWH)]
TotalServiceProvidedPerWH = [0 for y in range(numWH)]
TotalServiceProvidedPerTimeStep = [0 for y in range(Steps)]
TotalServiceCallsAcceptedPerWH = [0 for y in range(numWH)]
#items ending in "Reg" are only for timesteps where regulation is requested
TtankReg = [[0 for x in range(lengthRegulation)] for y in range(numWH)]
SoCReg = [[0 for x in range(lengthRegulation)] for y in range(numWH)]
IsAvailableAddReg = [[0 for x in range(lengthRegulation)] for y in range(numWH)]
IsAvailableShedReg = [[0 for x in range(lengthRegulation)] for y in range(numWH)]
elementOnReg = [[0 for x in range(lengthRegulation)] for y in range(numWH)]
AvailableCapacityAddReg = [[0 for x in range(lengthRegulation)] for y in range(numWH)]
AvailableCapacityShedReg = [[0 for x in range(lengthRegulation)] for y in range(numWH)]
ServiceCallsAcceptedReg = [[0 for x in range(lengthRegulation)] for y in range(numWH)]
ServiceProvidedReg = [[0 for x in range(lengthRegulation)] for y in range(numWH)]
TotalServiceProvidedPerWHReg = [0 for y in range(numWH)]
TotalServiceProvidedPerTimeStepReg = [0 for y in range(lengthRegulation)]
TotalServiceCallsAcceptedPerWHReg = [0 for y in range(numWH)]
##################################
# Initializing the water heater models
whs = [WaterHeater(Tamb[0], RHamb[0], Tmains[0], 0, fleet_load_request[0], Capacity[number], Type[number], Location[number], 0, MaxServiceCalls[number]) for number in range(numWH)]
for step in range(Steps):
number = 0
servsum = 0
request = 0
NumDevicesToCall = 0
laststep = step - 1
if fleet_load_request[step][0] != 'regulation': #NOT providing regulation
# decision making about which WH to call on for service, check if available at last step, if so then
# check for SoC > minSOC and Soc < maxSOC, whatever number that is, divide the total needed and ask for that for each
# decided to add max and min SoC limits just in case, they might not matter but wanted limits other than just whether a device was available
# at the last timestep
if step > 0:
for n in range(numWH):
if fleet_load_request[step][0] == 'load add' and IsAvailableAdd[n][laststep] > 0 and SoC[n][laststep] < maxSOC and AvailableCapacityAdd[n][laststep] > minCapacityAdd:
NumDevicesToCall += 1
elif fleet_load_request[step][0] == 'load shed' and IsAvailableShed[n][laststep] > 0 and SoC[n][laststep] > minSOC and AvailableCapacityShed[n][laststep] > minCapacityShed:
NumDevicesToCall += 1
# print('devices to call',NumDevicesToCall,'request', fleet_load_request[step][0])
# if fleet_load_request[step][1] < 0 and NumDevicesToCall > 0: #if shed is called for and there are some devices that can respond
# #first option below includes a fudge factor, second assumes that forecasting in the WH model for availability for the next timestep given aggregator-provided forecast water draws is accurate enough
# newrequest = fleet_load_request_total[step] / (NumDevicesToCall/9.5*np.exp(-numWH/20)+1) #9.5*exp(-numWH/20)+1 ad hoc curve fit based on trying numWH = 20,30,10,200 and doing hand curve fit.
# elif fleet_load_request[step][1] > 0 and NumDevicesToCall > 0:
# newrequest = fleet_load_request_total[step] / (NumDevicesToCall/2) # easier to do load add, but some "available" devices still won't be able to respond so ask for 2x what you would expect
# else:
# newrequest = fleet_load_request_total[step]
fleet_load_request[step] = [fleet_load_request[step][0],fleet_load_request_total[step] / max(NumDevicesToCall,1)]
for wh in whs: #loop through water heatesr
if step == 0:
ttank, tset, soC, availableCapacityAdd, availableCapacityShed, serviceCallsAccepted, eservice, isAvailableAdd, isAvailableShed, elementon = wh.execute(TtankInitial[number], TsetInitial[number], Tamb[number][0], RHamb[number][0], Tmains[number][0], draw[number][0], fleet_load_request[0], ServiceCallsAccepted[number][0], elementOn[number][0], addshedTimestep, draw_fleet_ave[0])
else:
TsetLast = Tset[number][laststep]
TtankLast = Ttank[number][laststep]
ttank, tset, soC, availableCapacityAdd, availableCapacityShed, serviceCallsAccepted, eservice, isAvailableAdd, isAvailableShed , elementon = wh.execute(TtankLast, TsetLast, Tamb[number][step], RHamb[number][step], Tmains[number][step], draw[number][step], fleet_load_request[step], ServiceCallsAccepted[number][laststep], elementOn[number][laststep], addshedTimestep, draw_fleet_ave[min([step+1,Steps])]) #min([step+1,Steps]) is to provide a forecast for the average fleet water draw for the next timestep while basically ignoring the last timestep forecast
# assign returned parameters to associated lists to be recorded
Tset[number][step] = tset
Ttank[number][step] = ttank
dTtank_set [number][step] = ttank - tset
SoC[number][step] = soC
IsAvailableAdd[number][step] = isAvailableAdd
IsAvailableShed[number][step] = isAvailableShed
elementOn[number][step] = elementon
AvailableCapacityAdd[number][step] = availableCapacityAdd
AvailableCapacityShed[number][step] = availableCapacityShed
ServiceCallsAccepted[number][step] = serviceCallsAccepted
ServiceProvided[number][step] = eservice
servsum += eservice
TotalServiceProvidedPerWH[number] = TotalServiceProvidedPerWH[number] + ServiceProvided[number][step]
request += fleet_load_request[step][1]
number += 1
TotalServiceProvidedPerTimeStep[step] += servsum
#####################################
# This is only for regulation, essentially the same operations as above but recorded separately and using a different timestep
if fleet_load_request[step][0] == 'regulation':
for reg_step in range(lengthRegulation):
NumDevicesToCall = 0
servsumReg = 0
#assume this won't be called unless step > 0
number = 0 #need to reset since i'll be looping through a different timestep
if reg_step == 0:
lastStep = laststep
#figure how many devices to call for the regulation service
for n in range(numWH):
if (IsAvailableAdd[n][lastStep] > 0 or IsAvailableShed[n][lastStep] > 0) > 0 and SoC[n][lastStep] > minSOC and SoC[n][lastStep] < maxSOC: #don't specify min capacity to be available for regulation
NumDevicesToCall += 1
else:
lastStep = reg_step -1
#figure how many devices to call for the regulation service
n = 0
for n in range(numWH):
if (IsAvailableAddReg[n][lastStep] > 0 or IsAvailableShedReg[n][lastStep] > 0) > 0 and SoCReg[n][lastStep] > minSOC and SoCReg[n][lastStep] < maxSOC: #don't specify min capacity to be available for regulation
NumDevicesToCall += 1
#figure out how much to ask of each device
if fleet_regulation_request[reg_step][1] != 0 and NumDevicesToCall > 0:
newrequest = fleet_regulation_request[reg_step][1] / NumDevicesToCall #since timestep is small, assume that all devices available last step will be available for this step
else:
newrequest = fleet_regulation_request[reg_step][1]
fleet_regulation_request[reg_step] = [fleet_regulation_request[reg_step][0],newrequest]
for wh in whs: #loop through each water heater, assume won't be called unless step > 0
if reg_step == 0:
TtankLast = Ttank[number][lastStep]
else:
TtankLast = TtankReg[number][lastStep]
# call the water heater model
ttank, tset, soC, availableCapacityAdd, availableCapacityShed, serviceCallsAccepted, eservice, isAvailableAdd, isAvailableShed, elementon = wh.execute(TtankLast, TsetLast, Tamb[number][step], RHamb[number][step], Tmains[number][step], draw[number][step], fleet_regulation_request[reg_step], ServiceCallsAcceptedReg[number][lastStep], elementOnReg[number][lastStep], addshedTimestep, draw_fleet_ave[min([step+1,Steps])])
# save outputs in lists
TtankReg[number][reg_step] = ttank
SoCReg[number][reg_step] = soC
IsAvailableAddReg[number][reg_step] = isAvailableAdd
IsAvailableShedReg[number][reg_step] = isAvailableShed
elementOnReg[number][reg_step] = elementon
AvailableCapacityAddReg[number][reg_step] = availableCapacityAdd
AvailableCapacityShedReg[number][reg_step] = availableCapacityShed
ServiceCallsAcceptedReg[number][reg_step] = serviceCallsAccepted
ServiceProvidedReg[number][reg_step] = eservice
servsumReg += eservice
TotalServiceProvidedPerWHReg[number] = TotalServiceProvidedPerWHReg[number] + ServiceProvidedReg[number][reg_step]
if reg_step == lengthRegulation-1: # save variables to change back to load add/shed timesteps
Ttank[number][step] = ttank
SoC[number][step] = soC
IsAvailable[number][step] = isAvailable
elementOn[number][step] = elementon
AvailableCapacityAdd[number][step] = availableCapacityAdd
AvailableCapacityShed[number][step] = availableCapacityShed
ServiceCallsAccepted[number][step] = ServiceCallsAccepted[number][laststep] # don't count regulation as service calls, if want to add this then substitute 'serviceCallsAccepted' for what is here
ServiceProvided[number][step] = eservice
servsum += eservice
TotalServiceProvidedPerWH[number] = TotalServiceProvidedPerWH[number] + ServiceProvided[number][step]
number += 1
TotalServiceProvidedPerTimeStepReg[reg_step] += servsumReg
TotalServiceProvidedPerTimeStep[step] += servsum #update for the next step when no longer in regulation mode
for n in range(number):
TotalServiceCallsAcceptedPerWHReg[n] = ServiceCallsAcceptedReg[n][reg_step]
for n in range(number):
TotalServiceCallsAcceptedPerWH[n] = ServiceCallsAccepted[n][step]
############################################################################
# Plotting load add/shed responses
plt.figure(1)
plt.clf()
plt.plot(draw[0][0:20],'r*-',label = 'WH 1')
plt.plot(draw[1][0:20],'bs-',label = 'WH 2')
plt.plot(draw[2][0:20],'k<-',label = 'WH 3')
plt.ylabel('Water Draw [gal]')
plt.xlabel('step')
plt.legend()
plt.ylim([0,30])
plt.figure(2)
plt.clf()
plt.plot(Ttank[0][0:50],'r*-',label = 'WH 1')
plt.plot(Ttank[1][0:50],'bs-',label = 'WH 2')
plt.plot(Ttank[2][0:50],'k<-',label = 'WH 3')
plt.ylabel('Ttank')
plt.xlabel('step')
plt.ylim([0,170])
plt.legend()
plt.show()
plt.figure(3)
plt.clf()
plt.plot(ServiceCallsAccepted[0][0:20],'r*-',label = 'WH 1')
plt.plot(ServiceCallsAccepted[1][0:20],'bs-',label = 'WH 2')
plt.plot(ServiceCallsAccepted[2][0:20],'k<-',label = 'WH 3')
plt.ylabel('Service Calls Accepted - Not Inc. Regulation')
plt.xlabel('step')
plt.legend()
plt.show()
plt.figure(4)
plt.clf()
plt.plot(ServiceProvided[0][0:50],'r*-',label = 'WH 1')
plt.plot(ServiceProvided[1][0:50],'bs-',label = 'WH 2')
plt.plot(ServiceProvided[2][0:50],'k<-',label = 'WH 3')
plt.ylabel('Service Provided Per WH Per Timestep, W')
plt.xlabel('step')
plt.legend()
plt.show()
plt.figure(5)
plt.clf()
plt.plot(TotalServiceProvidedPerTimeStep[0:20],'r*-',label='Provided by Fleet')
plt.plot(fleet_load_request_total[0:20],'bs-', label ='Requested')
plt.ylabel('Total Service During Timestep, W')
plt.xlabel('step')
plt.legend()
plt.show()
plt.figure(7)
plt.clf()
plt.hist(TotalServiceCallsAcceptedPerWH)
plt.xlabel('Total Service Calls Accepted per WH Annually')
plt.show()
plt.figure(9)
plt.clf()
plt.plot(AvailableCapacityAdd[0][0:20],'r*-',label='0')
plt.plot(AvailableCapacityAdd[1][0:20],'bs-',label='1')
plt.plot(AvailableCapacityAdd[2][0:20],'k<-',label='2')
plt.ylabel('Available Capacity for Load Add, W-hr')
plt.xlabel('step')
plt.legend()
plt.show()
plt.figure(10)
plt.clf()
plt.plot(AvailableCapacityShed[0][0:20],'r*-',label='0')
plt.plot(AvailableCapacityShed[1][0:20],'bs-',label='1')
plt.plot(AvailableCapacityShed[2][0:20],'k<-',label='2')
plt.ylabel('Available Capacity for Load Shed, W-hr')
plt.xlabel('step')
plt.legend()
plt.show()
plt.figure(19)
plt.clf()
plt.hist(TtankInitial)
plt.xlabel('Tank Temperature Initial [deg F]')
plt.show()
plt.figure(20)
plt.clf()
plt.hist(TsetInitial)
plt.xlabel('Tank Setpoint Temperature Initial [deg F]')
plt.show()
plt.figure(21)
plt.clf()
plt.hist(Capacity)
plt.xlabel('Tank Capacity [gal]')
plt.show()
##########################################################################
#plotting regulation responses
plt.figure(11)
plt.clf()
plt.plot(TtankReg[0][0:20],'r*-',label = 'WH 1')
plt.plot(TtankReg[1][0:20],'bs-',label = 'WH 2')
plt.plot(TtankReg[2][0:20],'k<-',label = 'WH 3')
plt.ylabel('Tank Temperature deg F')
plt.xlabel('Regulation Timestep')
plt.legend()
plt.ylim([0,170])
plt.figure(12)
plt.clf()
plt.plot(SoCReg[0][0:50],'r*-',label = 'WH 1')
plt.plot(SoCReg[1][0:50],'bs-',label = 'WH 2')
plt.plot(SoCReg[2][0:50],'k<-',label = 'WH 3')
plt.ylabel('SoC')
plt.xlabel('Regulation Timestep')
plt.ylim([-0.5,1.2])
plt.legend()
plt.show()
plt.figure(13)
plt.clf()
plt.plot(ServiceCallsAcceptedReg[0][0:50],'r*-',label = 'WH 1')
plt.plot(ServiceCallsAcceptedReg[1][0:50],'bs-',label = 'WH 2')
plt.plot(ServiceCallsAcceptedReg[2][0:50],'k<-',label = 'WH 3')
plt.ylabel('Service Calls Accepted')
plt.xlabel('Regulation Timestep')
plt.legend()
plt.show()
plt.figure(14)
plt.clf()
plt.plot(ServiceProvidedReg[0][0:50],'r*-',label = 'WH 1')
plt.plot(ServiceProvidedReg[1][0:50],'bs-',label = 'WH 2')
plt.plot(ServiceProvidedReg[2][0:50],'k<-',label = 'WH 3')
plt.plot(ServiceProvidedReg[3][0:50],'go-',label = 'WH 4')
plt.ylabel('Service Provided Per WH Per Timestep, W')
plt.xlabel('Regulation Timestep')
plt.legend()
plt.show()
plt.figure(15)
plt.clf()
plt.plot(TotalServiceProvidedPerTimeStepReg[0:50],'r*-',label='Provided by Fleet')
plt.plot(fleet_regulation_request_magnitude[0:50],'bs-', label ='Requested')
plt.ylabel('Total Service During Timestep, W')
plt.xlabel('Regulation Timestep')
plt.legend()
plt.show()
plt.figure(16)
plt.clf()
plt.hist(TotalServiceCallsAcceptedPerWHReg)
plt.xlabel('Total Service Calls Accepted per WH Annually')
plt.show()
plt.figure(17)
plt.clf()
plt.plot(AvailableCapacityAddReg[0][0:50],'r*-',label='0')
plt.plot(AvailableCapacityAddReg[1][0:50],'bs-',label='1')
plt.plot(AvailableCapacityAddReg[2][0:50],'k<-',label='2')
plt.ylabel('Available Capacity for Load Add, W-hr')
plt.xlabel('Regulation Timestep')
plt.legend()
plt.show()
plt.figure(18)
plt.clf()
plt.plot(AvailableCapacityShedReg[0][0:50],'r*-',label='0')
plt.plot(AvailableCapacityShedReg[1][0:50],'bs-',label='1')
plt.plot(AvailableCapacityShedReg[2][0:50],'k<-',label='2')
plt.ylabel('Available Capacity for Load Shed, W-hr')
plt.xlabel('Regulation Timestep')
plt.legend()
plt.show()
###############################################################################
# from Jeff Maguire annual_ewh_run.py on December, 11, 2017
# modifications by CWB, eliminate 'self', eliminated 'initial_time'
def get_annual_conditions(climate_location, installation_location, days_shift,n_br,unit,timestep_min):
#reads from 8760 (or 8760 * 60) input files for ambient air temp, RH, mains temp, and draw profile and loads data into arrays for future use
Tamb = []
RHamb = []
Tmains = []
if climate_location != 'Denver':
raise NameError("Error! Only allowing Denver as a run location for now. Eventually we'll allow different locations and load different files based on the location.")
if installation_location == 'living':
amb_temp_column = 1
amb_rh_column = 2
elif installation_location == 'unfinished basement':
amb_temp_column = 3
amb_rh_column = 4
elif installation_location == 'garage':
amb_temp_column = 5
amb_rh_column = 6
elif installation_location == 'unifinished attic':
amb_temp_column = 7
amb_rh_column = 8
else:
raise NameError("Error! Only allowed installation locations are living, unfinished basement, garage, unfinished attic. Change the installation location to a valid location")
mains_temp_column = 9
linenum = 0
ambient_cond_file = open((os.path.join(os.path.dirname(__file__),'data_files','denver_conditions.csv')),'r') #steply ambient air temperature and RH
for line in ambient_cond_file:
if linenum > 0: #skip header
items = line.strip().split(',')
for b in range(int(60/timestep_min)): # repeat depending on how many timesteps per step there are.
Tamb.append([float(items[amb_temp_column])])
RHamb.append([float(items[amb_rh_column])])
Tmains.append([float(items[mains_temp_column])])
linenum += 1
ambient_cond_file.close()
#Read in max and average values for the draw profiles
linenum = 0
n_beds = 0
n_unit = 0
#Total gal/day draw numbers based on BA HSP
sh_hsp_tot = 14.0 + 4.67 * float(n_br)
s_hsp_tot = 12.5 + 4.16 * float(n_br)
cw_hsp_tot = 2.35 + 0.78 * float(n_br)
dw_hsp_tot = 2.26 + 0.75 * float(n_br)
b_hsp_tot = 3.50 + 1.17 * float(n_br)
sh_max = np.zeros((5,10))
s_max = np.zeros((5,10))
b_max = np.zeros((5,10))
cw_max = np.zeros((5,10))
dw_max = np.zeros((5,10))
sh_sum = np.zeros((5,10))
s_sum = np.zeros((5,10))
b_sum = np.zeros((5,10))
cw_sum = np.zeros((5,10))
dw_sum = np.zeros((5,10))
sum_max_flows_file = open((os.path.join(os.path.dirname(__file__),'data_files', 'DrawProfiles','MinuteDrawProfilesMaxFlows.csv')),'r') #sum and max flows for all units and # of bedrooms
for line in sum_max_flows_file:
if linenum > 0:
items = line.strip().split(',')
n_beds = int(items[0]) - 1
n_unit = int(items[1]) - 1
#column is unit number, row is # of bedrooms. Taken directly from BEopt
sh_max[n_beds, n_unit] = float(items[2])
s_max[n_beds, n_unit] = float(items[3])
b_max[n_beds, n_unit] = float(items[4])
cw_max[n_beds, n_unit] = float(items[5])
dw_max[n_beds, n_unit] = float(items[6])
sh_sum[n_beds, n_unit] = float(items[7])
s_sum[n_beds, n_unit] = float(items[8])
b_sum[n_beds, n_unit] = float(items[9])
cw_sum[n_beds, n_unit] = float(items[10])
dw_sum[n_beds, n_unit] = float(items[11])
linenum += 1
sum_max_flows_file.close()
linenum = 0
#Read in individual draw profiles
steps_per_year = int(np.ceil(60 * 24 * 365 / timestep_min))
hot_draw = np.zeros((steps_per_year,1))
mixed_draw = np.zeros((steps_per_year,1))
#take into account days shifted
draw_idx = 60 * 24 * days_shift
draw_profile_file = open((os.path.join(os.path.dirname(__file__),'data_files','DrawProfiles','DHWDrawSchedule_{}bed_unit{}_1min_fraction.csv'.format(n_br,unit))),'r') #minutely draw profile (shower, sink, CW, DW, bath)
agghotflow = 0.0
aggmixflow = 0.0
for line in draw_profile_file:
nbr = n_br - 1 #go back to starting index at zero for python internal calcs
if linenum > 0:
items = line.strip().split(',')
hot_flow = 0.0
mixed_flow = 0.0
if items[0] != '':
sh_draw = float(items[0]) * sh_max[nbr,unit] * (sh_hsp_tot / sh_sum[nbr,unit])
mixed_flow += sh_draw
if items[1] != '':
s_draw = float(items[1]) * s_max[nbr,unit] * (s_hsp_tot / s_sum[nbr,unit])
mixed_flow += s_draw
if items[2] != '':
cw_draw = float(items[2]) * cw_max[nbr,unit] * (cw_hsp_tot / cw_sum[nbr,unit])
hot_flow += cw_draw
if items[3] != '':
dw_draw = float(items[3]) * dw_max[nbr,unit] * (dw_hsp_tot / dw_sum[nbr,unit])
hot_flow += dw_draw
if items[4] != '':
b_draw = float(items[4]) * b_max[nbr,unit] * (b_hsp_tot / b_sum[nbr,unit])
mixed_flow += b_draw
agghotflow += hot_flow
aggmixflow += mixed_flow
# aggregate whenever the linenum is a multiple of timestep_min. Each increment in lineum represents one minute. Timestep_min is the number of minutes per timestep
if linenum % timestep_min == 0:
hot_draw[draw_idx] = agghotflow
mixed_draw[draw_idx] = aggmixflow
agghotflow = 0
aggmixflow = 0
draw_idx += 1
linenum += 1
if draw_idx >= steps_per_year:
draw_idx = 0
draw_profile_file.close()
return Tamb, RHamb, Tmains, hot_draw, mixed_draw
if __name__ == '__main__':
main()