-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathEx_high_level_controller_3.py
269 lines (246 loc) · 9.28 KB
/
Ex_high_level_controller_3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
# -*- coding: utf-8 -*-
"""
Created on Tue Apr 17 15:54:25 2018
Example Higher Level Controller
@author: cbooten
"""
import random
#import numpy as np
#import os
import datetime
from fleet_request_2 import FleetRequest
from WH_fleet_control_6 import WaterHeaterFleet
def main():
Steps = 10 #num steps in simulation
if Steps > 1:
forecast = 1
else:
forecast = 0
Q_request = 0 # reactive power request, not considering reactive power
Timestep = .1 #minutes, NOTE, MUST BE A DIVISOR OF 60. Acceptable numbers are: 0.1, 0.2, 0.5, 1,2,3,4,5,6,10,12,15,20,30, 60, etc.
starttime = 8759 # 0-8759, hour of the year to start simulation
startday = (starttime // 24) + 1
monthindex = [[1,31],[2,59],[3,90],[4,120],[5,151],[6,181],[7,212],[8,243],[9,273],[10,304],[11,334],[12,365]] #doesn't account for leap years
for m in monthindex:
if startday <= m[1]:
startmonth = m[0]
break
if startmonth > 1:
startday -= monthindex[(m[0]-2)][1]
starthour = starttime % 24
StartTime = datetime.datetime(2018,startmonth,startday,starthour)
########################################################################
#generate load request signal and regulation
# NOTE: code is set up to deal with capacity separately from regulation, the only interface is in the capacity signal there is a single timestep
# where regulation is called, the entire code switches into regulation mode for that single timestep (which is much longer than a regulation timestep)
# when the calculations are complete, it returns conditions to be used for subsequent capacity timesteps
P_request = []
for step in range(Steps):
capacity_needed = 1e6 + 2e5*random.random()#Watts needed, >0 is capacity add, <0 is capacity shed
# Fleet_size_represented = capacity_needed/4500 # approximately how many WH would be needed to be able to provide this capacity
# magnitude_load_add_shed = capacity_needed/Fleet_size_represented #def magnitude of request for load add/shed
if step % 12 == 0 or step % 12 == 1 or step % 12 == 2: # this is my aribtrary but not random way of creating load add/shed events. should be replaced with a more realistic signal at some point
if step > 1:
s = -capacity_needed
else:
# service = ['none',0]
s=0
elif step % 7 == 0 or step % 7 == 1:
s = capacity_needed
P_request.append(s)
############################################################################
# Call fleet
#creating service request object
ServiceRequest = FleetRequest(StartTime, Timestep, P_request, Q_request, Steps, forecast) # ts,dt,Power[T],0.0)
# initializing fleet
fleet = WaterHeaterFleet(ServiceRequest)
#calling fleet
FleetResponse = fleet.ExecuteFleet(ServiceRequest) #
print 'P_injected={}'.format(FleetResponse.P_injected)
print 'Q_injected={}'.format(FleetResponse.Q_injected)
print 'P_service={}'.format(FleetResponse.P_service)
print 'Q_service={}'.format(FleetResponse.Q_service)
print 'P_injected_max={}'.format(FleetResponse.P_injected_max)
print 'P_service_max={}'.format(FleetResponse.P_service_max)
print 'Q_service_max={}'.format(FleetResponse.Q_service_max)
print 'P_forecast={}'.format(FleetResponse.P_forecast)
print 'Q_forecast={}'.format(FleetResponse.Q_forecast)
print 'eta_charge={}'.format(FleetResponse.eta_charge)
print 'eta_discharge={}'.format(FleetResponse.eta_discharge)
############################################################################
# Plotting load add/shed responses
# plt.figure(1)
# plt.clf()
# plt.plot(draw[0][0:20],'r*-',label = 'WH 1')
# plt.plot(draw[1][0:20],'bs-',label = 'WH 2')
# plt.plot(draw[2][0:20],'k<-',label = 'WH 3')
# plt.ylabel('Water Draw [gal]')
# plt.xlabel('step')
# plt.legend()
# plt.ylim([0,30])
#
# plt.figure(2)
# plt.clf()
# plt.plot(Ttank[0][0:50],'r*-',label = 'WH 1')
# plt.plot(Ttank[1][0:50],'bs-',label = 'WH 2')
# plt.plot(Ttank[2][0:50],'k<-',label = 'WH 3')
# plt.ylabel('Ttank')
# plt.xlabel('step')
# plt.ylim([0,170])
# plt.legend()
# plt.show()
#
# plt.figure(3)
# plt.clf()
# plt.plot(ServiceCallsAccepted[0][0:20],'r*-',label = 'WH 1')
# plt.plot(ServiceCallsAccepted[1][0:20],'bs-',label = 'WH 2')
# plt.plot(ServiceCallsAccepted[2][0:20],'k<-',label = 'WH 3')
# plt.ylabel('Service Calls Accepted - Not Inc. Regulation')
# plt.xlabel('step')
# plt.legend()
# plt.show()
#
# plt.figure(4)
# plt.clf()
# plt.plot(ServiceProvided[0][0:50],'r*-',label = 'WH 1')
# plt.plot(ServiceProvided[1][0:50],'bs-',label = 'WH 2')
# plt.plot(ServiceProvided[2][0:50],'k<-',label = 'WH 3')
# plt.ylabel('Service Provided Per WH Per Timestep, W')
# plt.xlabel('step')
# plt.legend()
# plt.show()
#
# plt.figure(5)
# plt.clf()
# plt.plot(TotalServiceProvidedPerTimeStep[0:20],'r*-',label='Provided by Fleet')
# plt.plot(fleet_load_request_total[0:20],'bs-', label ='Requested')
# plt.ylabel('Total Service During Timestep, W')
# plt.xlabel('step')
# plt.legend()
# plt.show()
#
# plt.figure(7)
# plt.clf()
# plt.hist(TotalServiceCallsAcceptedPerWH)
# plt.xlabel('Total Service Calls Accepted per WH Annually')
# plt.show()
#
# plt.figure(9)
# plt.clf()
# plt.plot(AvailableCapacityAdd[0][0:20],'r*-',label='0')
# plt.plot(AvailableCapacityAdd[1][0:20],'bs-',label='1')
# plt.plot(AvailableCapacityAdd[2][0:20],'k<-',label='2')
# plt.ylabel('Available Capacity for Load Add, W-hr')
# plt.xlabel('step')
# plt.legend()
# plt.show()
#
# plt.figure(10)
# plt.clf()
# plt.plot(AvailableCapacityShed[0][0:20],'r*-',label='0')
# plt.plot(AvailableCapacityShed[1][0:20],'bs-',label='1')
# plt.plot(AvailableCapacityShed[2][0:20],'k<-',label='2')
# plt.ylabel('Available Capacity for Load Shed, W-hr')
# plt.xlabel('step')
# plt.legend()
# plt.show()
#
# plt.figure(19)
# plt.clf()
# plt.hist(TtankInitial)
# plt.xlabel('Tank Temperature Initial [deg F]')
# plt.show()
#
# plt.figure(20)
# plt.clf()
# plt.hist(TsetInitial)
# plt.xlabel('Tank Setpoint Temperature Initial [deg F]')
# plt.show()
#
# plt.figure(21)
# plt.clf()
# plt.hist(Capacity)
# plt.xlabel('Tank Capacity [gal]')
# plt.show()
#
#
# ##########################################################################
# #plotting regulation responses
# plt.figure(11)
# plt.clf()
# plt.plot(TtankReg[0][0:20],'r*-',label = 'WH 1')
# plt.plot(TtankReg[1][0:20],'bs-',label = 'WH 2')
# plt.plot(TtankReg[2][0:20],'k<-',label = 'WH 3')
# plt.ylabel('Tank Temperature deg F')
# plt.xlabel('Regulation Timestep')
# plt.legend()
# plt.ylim([0,170])
#
# plt.figure(12)
# plt.clf()
# plt.plot(SoCReg[0][0:50],'r*-',label = 'WH 1')
# plt.plot(SoCReg[1][0:50],'bs-',label = 'WH 2')
# plt.plot(SoCReg[2][0:50],'k<-',label = 'WH 3')
# plt.ylabel('SoC')
# plt.xlabel('Regulation Timestep')
# plt.ylim([-0.5,1.2])
# plt.legend()
# plt.show()
#
# plt.figure(13)
# plt.clf()
# plt.plot(ServiceCallsAcceptedReg[0][0:50],'r*-',label = 'WH 1')
# plt.plot(ServiceCallsAcceptedReg[1][0:50],'bs-',label = 'WH 2')
# plt.plot(ServiceCallsAcceptedReg[2][0:50],'k<-',label = 'WH 3')
# plt.ylabel('Service Calls Accepted')
# plt.xlabel('Regulation Timestep')
# plt.legend()
# plt.show()
#
# plt.figure(14)
# plt.clf()
# plt.plot(ServiceProvidedReg[0][0:50],'r*-',label = 'WH 1')
# plt.plot(ServiceProvidedReg[1][0:50],'bs-',label = 'WH 2')
# plt.plot(ServiceProvidedReg[2][0:50],'k<-',label = 'WH 3')
# plt.plot(ServiceProvidedReg[3][0:50],'go-',label = 'WH 4')
# plt.ylabel('Service Provided Per WH Per Timestep, W')
# plt.xlabel('Regulation Timestep')
# plt.legend()
# plt.show()
#
# plt.figure(15)
# plt.clf()
# plt.plot(TotalServiceProvidedPerTimeStepReg[0:50],'r*-',label='Provided by Fleet')
# plt.plot(fleet_regulation_request_magnitude[0:50],'bs-', label ='Requested')
# plt.ylabel('Total Service During Timestep, W')
# plt.xlabel('Regulation Timestep')
# plt.legend()
# plt.show()
#
# plt.figure(16)
# plt.clf()
# plt.hist(TotalServiceCallsAcceptedPerWHReg)
# plt.xlabel('Total Service Calls Accepted per WH Annually')
# plt.show()
#
# plt.figure(17)
# plt.clf()
# plt.plot(AvailableCapacityAddReg[0][0:50],'r*-',label='0')
# plt.plot(AvailableCapacityAddReg[1][0:50],'bs-',label='1')
# plt.plot(AvailableCapacityAddReg[2][0:50],'k<-',label='2')
# plt.ylabel('Available Capacity for Load Add, W-hr')
# plt.xlabel('Regulation Timestep')
# plt.legend()
# plt.show()
#
# plt.figure(18)
# plt.clf()
# plt.plot(AvailableCapacityShedReg[0][0:50],'r*-',label='0')
# plt.plot(AvailableCapacityShedReg[1][0:50],'bs-',label='1')
# plt.plot(AvailableCapacityShedReg[2][0:50],'k<-',label='2')
# plt.ylabel('Available Capacity for Load Shed, W-hr')
# plt.xlabel('Regulation Timestep')
# plt.legend()
# plt.show()
if __name__ == '__main__':
main()