-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompression.py
executable file
·129 lines (116 loc) · 5.01 KB
/
compression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import numpy as np
import skimage as ski
from skimage import io, transform, color
import matplotlib.pyplot as plt
import cvxpy as cvx
import copy
def axis_set(L,shape):
"""generate a set of L axes surrounding the image, returning R-- the length of each axis,
the set of axis origins relative to the image center, normals, and tangents-- the vectors
characterising each axis. L must be odd."""
l,w = shape
R = np.sqrt(l**2+w**2)/2
angles = np.arange(0,2*np.pi,2*np.pi/L)
origins = [np.array([R*np.cos(a)+l/2,R*np.sin(a)+w/2]) for a in angles]
normals = [np.array([np.cos(a),np.sin(a)]) for a in angles] #directions from center of image to origins of axes
tangents = [np.cross(np.array([*n,0]),np.array([0,0,-1.0]))[:-1] for n in normals] #directions of axes
return origins,normals,tangents
def project(points,shape,L,M):
"""project a set of points into the coordinate frames surrounding the image as defined in axis_set.
Output is list of L projected (but not compressed) vectors F-- one for each frame"""
shift = np.array(shape)/2#to shift vectors to be from the origin
origins,normals,tangents = axis_set(L,shape) #size of axes and their parameters
m = M//2 #center of compressed vector
F = []
for o,n,t in zip(origins,normals,tangents): #for each axis direction
f = np.zeros(shape=M,dtype=float) #vector representation of points in this frame
for pt in points:
#first shift the point to be from the origin o
pt = np.array(pt)-o # p seen from the origin o
#print(np.dot(pt,t))
proj_t = np.round(m+np.dot(pt,t)).astype('int')# the projection of p onto t
proj_n = np.dot(pt,n) # the projection of p onto n
f[proj_t]=proj_n
F.append(f)
return F
def sensing_matrix(N,M):
"""the sensing matrix. N is the length of the compressed representation Y
M is the length of the uncompressed representation F, which should be
int(sqrt(l**2+w**2)) where (l,w) = image.shape"""
return np.random.uniform(size=(N,M))
def encode(F,N,S):
"""compress a vector representation of length M>N to length N with gauss random sensing"""
M, = F[0].shape
Y = []
for f in F:
Y.append(np.matmul(S,f))
return Y #return list of compressed vectors and the sensing matrix
def decode(Y,S):
"""decode compressed vectors Y into the expanded representations F
Y = [y1,y2,...] is a list of all compressed vectors to be decoded
output F_hat """
N,M = S.shape
F_hat = []
for y in Y:
f = cvx.Variable(M)
objective = cvx.Minimize(cvx.norm(f,1))
constraints = [S*f == y]
prob = cvx.Problem(objective,constraints)
result = prob.solve(verbose=False)
f = np.array(f.value)
#f = np.array([a for b in f for a in b])
#f[np.abs(f)<1e-9]=0
F_hat.append(f)
return np.array(F_hat).squeeze() #return prediction of un-compressed vector representations of Y vectors
def unproject(F_hat,shape,L,M):
"""given predictions of pre-compression vectors, unproject them back to point predictions"""
l,w = shape
shift = np.array([l/2,w/2])#to shift vectors to be from the origin
origins,normals,tangents = axis_set(L,shape) #size of axes and their parameters
m = M//2 #center of compressed vector
points = []
for i,f_hat in enumerate(F_hat):
o,n,t = origins[i],normals[i],tangents[i]
inds, = np.nonzero(f_hat)
for j in inds:
proj_n = f_hat[j]
proj_t = j-m
pt = t*proj_t+ n*proj_n # this is from the origin of the coordinate frame
# now go from the origin of the coordinate frame to the corner of the image
pt = pt + o# + shift
points.append(pt)
return np.array(points)
def draw_plus(p,im,col=[1.0,0,1.0]):
s0,s1 = im.shape[:2]
if len(im.shape)<3:
im2 = np.stack((im,)*3,-1)
else:
im2 = im
x,y = p
w = 2
a = p-np.array([w,0])
b = p+np.array([w,0])
c = p-np.array([0,w])
d = p+np.array([0,w])
a,b,c,d = np.array([a,b,c,d],dtype=int)
#if np.alltrue(np.array([ 0<x[0]<l and 0<x[1]<w for x in [a,b,c,d]])):
if 0<a[0]<s0 and 0<a[1]<s1 and 0<b[0]<s0 and 0<b[1]<s1:
im2[ski.draw.line(*a,*b)]=col
if 0<c[0]<s0 and 0<c[1]<s1 and 0<d[0]<s0 and 0<d[1]<s1:
im2[ski.draw.line(*c,*d)]=col
return im2
def view_points(im,points):
im2 = np.stack((im,)*3,-1)
l,w = im.shape
for p in points:
if 0<p[0]<l and 0<p[1]<w:
im2 = draw_plus(p,im2)
else:
#print('prediction outside image')
pass
plt.imshow(im2)
def decompress(Y,S,shape,L,M):
""" decode and unproject the encoded points signal Y given sensing matrix S,
shape of image shape, length of compressed representation L, and length of
uncompressed representation M = int(round(sqrt(shape[0]**2+shape[1]**2)))"""
return unproject(decode(Y,S),shape,L,M)