-
Notifications
You must be signed in to change notification settings - Fork 15
/
ECO_tracking.m
531 lines (446 loc) · 22.2 KB
/
ECO_tracking.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
% apply the ECO tracking for each target (modified based on the original ECO code)
function tracker = ECO_tracking(frame_id, im, bboxes_det, tracker, opt)
tracker.eco.n_frame = tracker.eco.n_frame + 1;
frame = tracker.eco.n_frame;
% variables from ECO_initialize.m
params = tracker.eco.params;
max_train_samples = tracker.eco.max_train_samples;
features = tracker.eco.features;
global_fparams = tracker.eco.global_fparams;
pos = tracker.eco.pos;
target_sz = tracker.eco.target_sz;
currentScaleFactor = tracker.eco.currentScaleFactor;
base_target_sz = tracker.eco.base_target_sz;
img_support_sz = tracker.eco.img_support_sz;
feature_dim = tracker.eco.feature_dim;
num_feature_blocks = tracker.eco.num_feature_blocks;
feature_reg = tracker.eco.feature_reg;
feature_extract_info = tracker.eco.feature_extract_info;
compressed_dim = tracker.eco.compressed_dim;
compressed_dim_cell = tracker.eco.compressed_dim_cell;
filter_sz = tracker.eco.filter_sz;
filter_sz_cell = tracker.eco.filter_sz_cell;
output_sz = tracker.eco.output_sz;
pad_sz = tracker.eco.pad_sz;
kx = tracker.eco.kx;
ky = tracker.eco.ky;
yf = tracker.eco.yf;
cos_window = tracker.eco.cos_window;
interp1_fs = tracker.eco.interp1_fs;
interp2_fs = tracker.eco.interp2_fs;
reg_filter = tracker.eco.reg_filter;
reg_energy = tracker.eco.reg_energy;
nScales = tracker.eco.nScales;
scaleFactors = tracker.eco.scaleFactors;
scale_filter = tracker.eco.scale_filter;
min_scale_factor = tracker.eco.min_scale_factor;
max_scale_factor = tracker.eco.max_scale_factor;
init_CG_opts = tracker.eco.init_CG_opts;
CG_opts = tracker.eco.CG_opts;
rect_position = tracker.eco.rect_position;
prior_weights = tracker.eco.prior_weights;
sample_weights = tracker.eco.sample_weights;
samplesf = tracker.eco.samplesf;
score_matrix = tracker.eco.score_matrix;
latest_ind = tracker.eco.latest_ind;
frames_since_last_train = tracker.eco.frames_since_last_train;
num_training_samples = tracker.eco.num_training_samples;
minimum_sample_weight = tracker.eco.minimum_sample_weight;
res_norms = tracker.eco.res_norms;
is_color_image = tracker.eco.is_color_image;
% variables which are useful when frame == 1
sample_pos = tracker.eco.sample_pos;
sample_scale = tracker.eco.sample_scale;
xl = tracker.eco.xl;
xlf = tracker.eco.xlf;
projection_matrix = tracker.eco.projection_matrix;
shift_samp = tracker.eco.shift_samp;
xlf_proj = tracker.eco.xlf_proj;
hf = tracker.eco.hf;
lf_ind = tracker.eco.lf_ind;
proj_energy = tracker.eco.proj_energy;
sample_energy = tracker.eco.sample_energy;
rhs_samplef = tracker.eco.rhs_samplef;
diag_M = tracker.eco.diag_M;
p = tracker.eco.p;
rho = tracker.eco.rho;
r_old = tracker.eco.r_old;
init_samplef = tracker.eco.init_samplef;
init_samplef_H = tracker.eco.init_samplef_H;
projection_matrix_init = tracker.eco.projection_matrix_init;
init_samplef_proj = tracker.eco.init_samplef_proj;
init_hf = tracker.eco.init_hf;
fyf = tracker.eco.fyf;
res_norms_temp = tracker.eco.res_norms_temp;
% other variables
hf_full = tracker.eco.hf_full;
% narrow the bbox to avoid tracking drift
target_sz(2) = target_sz(2) * 0.5;
% load image
if size(im,3) > 1 && is_color_image == false
im = im(:,:,1);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Target localization step
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Do not estimate translation and scaling on the first frame, since we
% just want to initialize the tracker there
if frame > 1
old_pos = inf(size(pos));
iter = 1;
%translation search
while iter <= params.refinement_iterations && any(old_pos ~= pos)
% Extract features at multiple resolutions
sample_pos = round(pos);
det_sample_pos = sample_pos;
sample_scale = currentScaleFactor*scaleFactors;
xt = extract_features(im, sample_pos, sample_scale, features, global_fparams, feature_extract_info);
% Project sample
xt_proj = project_sample(xt, projection_matrix);
% Do windowing of features
xt_proj = cellfun(@(feat_map, cos_window) bsxfun(@times, feat_map, cos_window), xt_proj, cos_window, 'uniformoutput', false);
% Compute the fourier series
xtf_proj = cellfun(@cfft2, xt_proj, 'uniformoutput', false);
% Interpolate features to the continuous domain
xtf_proj = interpolate_dft(xtf_proj, interp1_fs, interp2_fs);
% Compute convolution for each feature block in the Fourier domain
scores_fs_feat = cellfun(@(hf, xf, pad_sz) padarray(sum(bsxfun(@times, hf, xf), 3), pad_sz), hf_full, xtf_proj, pad_sz, 'uniformoutput', false);
% Also sum over all feature blocks.
% Gives the fourier coefficients of the convolution response.
scores_fs = permute(sum(cell2mat(scores_fs_feat), 3), [1 2 4 3]);
% Optimize the continuous score function with Newton's method.
[trans_row, trans_col, scale_ind] = optimize_scores(scores_fs, params.newton_iterations);
% Compute the translation vector in pixel-coordinates and round
% to the closest integer pixel.
translation_vec = [trans_row, trans_col] .* (img_support_sz./output_sz) * currentScaleFactor * scaleFactors(scale_ind);
scale_change_factor = scaleFactors(scale_ind);
% update position
old_pos = pos;
pos = sample_pos + translation_vec;
if params.clamp_position
pos = max([1 1], min([size(im,1) size(im,2)], pos));
end
% Do scale tracking with the scale filter
if nScales > 0 && params.use_scale_filter
scale_change_factor = scale_filter_track(im, pos, base_target_sz, currentScaleFactor, scale_filter, params);
end
% Update the scale
currentScaleFactor = currentScaleFactor * scale_change_factor;
% Adjust to make sure we are not to large or to small
if currentScaleFactor < min_scale_factor
currentScaleFactor = min_scale_factor;
elseif currentScaleFactor > max_scale_factor
currentScaleFactor = max_scale_factor;
end
iter = iter + 1;
end
end
pre_pos = tracker.eco.pos;
pre_target_sz = tracker.eco.target_sz;
pos_diff = double(sqrt((pos(1)-pre_pos(1)).^2 + (pos(2)-pre_pos(2)).^2));
if pos_diff > 1.2 * double(pre_target_sz(2))
pos = pre_pos;
is_drift = 1;
else
is_drift = 0;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Model update step
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Extract sample and init projection matrix
if frame == 1
% Extract image region for training sample
sample_pos = round(pos);
sample_scale = currentScaleFactor;
xl = extract_features(im, sample_pos, currentScaleFactor, features, global_fparams, feature_extract_info);
% Do windowing of features
xlw = cellfun(@(feat_map, cos_window) bsxfun(@times, feat_map, cos_window), xl, cos_window, 'uniformoutput', false);
% Compute the fourier series
xlf = cellfun(@cfft2, xlw, 'uniformoutput', false);
% Interpolate features to the continuous domain
xlf = interpolate_dft(xlf, interp1_fs, interp2_fs);
% New sample to be added
xlf = compact_fourier_coeff(xlf);
% Initialize projection matrix
xl1 = cellfun(@(x) reshape(x, [], size(x,3)), xl, 'uniformoutput', false);
xl1 = cellfun(@(x) bsxfun(@minus, x, mean(x, 1)), xl1, 'uniformoutput', false);
if strcmpi(params.proj_init_method, 'pca')
[projection_matrix, ~, ~] = cellfun(@(x) svd(x' * x), xl1, 'uniformoutput', false);
projection_matrix = cellfun(@(P, dim) single(P(:,1:dim)), projection_matrix, compressed_dim_cell, 'uniformoutput', false);
elseif strcmpi(params.proj_init_method, 'rand_uni')
projection_matrix = cellfun(@(x, dim) single(randn(size(x,2), dim)), xl1, compressed_dim_cell, 'uniformoutput', false);
projection_matrix = cellfun(@(P) bsxfun(@rdivide, P, sqrt(sum(P.^2,1))), projection_matrix, 'uniformoutput', false);
elseif strcmpi(params.proj_init_method, 'none')
projection_matrix = [];
else
error('Unknown initialization method for the projection matrix: %s', params.proj_init_method);
end
clear xl1 xlw
% Shift sample
shift_samp = 2*pi * (pos - sample_pos) ./ (sample_scale * img_support_sz);
xlf = shift_sample(xlf, shift_samp, kx, ky);
% Project sample
xlf_proj = project_sample(xlf, projection_matrix);
elseif params.learning_rate > 0
if ~params.use_detection_sample
% Extract image region for training sample
sample_pos = round(pos);
sample_scale = currentScaleFactor;
xl = extract_features(im, sample_pos, currentScaleFactor, features, global_fparams, feature_extract_info);
% Project sample
xl_proj = project_sample(xl, projection_matrix);
% Do windowing of features
xl_proj = cellfun(@(feat_map, cos_window) bsxfun(@times, feat_map, cos_window), xl_proj, cos_window, 'uniformoutput', false);
% Compute the fourier series
xlf1_proj = cellfun(@cfft2, xl_proj, 'uniformoutput', false);
% Interpolate features to the continuous domain
xlf1_proj = interpolate_dft(xlf1_proj, interp1_fs, interp2_fs);
% New sample to be added
xlf_proj = compact_fourier_coeff(xlf1_proj);
else
% Use the sample that was used for detection
sample_scale = sample_scale(scale_ind);
xlf_proj = cellfun(@(xf) xf(:,1:(size(xf,2)+1)/2,:,scale_ind), xtf_proj, 'uniformoutput', false);
end
% Shift the sample so that the target is centered
shift_samp = 2*pi * (pos - sample_pos) ./ (sample_scale * img_support_sz);
xlf_proj = shift_sample(xlf_proj, shift_samp, kx, ky);
end
xlf_proj_perm = cellfun(@(xf) permute(xf, [4 3 1 2]), xlf_proj, 'uniformoutput', false);
if params.use_sample_merge
% Find the distances with existing samples
dist_vector = find_cluster_distances(samplesf, xlf_proj_perm, num_feature_blocks, num_training_samples, max_train_samples, params);
[merged_sample, new_cluster, merged_cluster_id, new_cluster_id, score_matrix, prior_weights,num_training_samples] = ...
merge_clusters(samplesf, xlf_proj_perm, dist_vector, score_matrix, prior_weights,...
num_training_samples,num_feature_blocks,max_train_samples,minimum_sample_weight,params);
else
% Do the traditional adding of a training sample and weight update
% of C-COT
[prior_weights, replace_ind] = update_prior_weights(prior_weights, sample_weights, latest_ind, frame, params);
latest_ind = replace_ind;
merged_cluster_id = 0;
new_cluster = xlf_proj_perm;
new_cluster_id = replace_ind;
end
if frame > 1 && params.learning_rate > 0 || frame == 1 && ~params.update_projection_matrix
% Insert the new training sample
for k = 1:num_feature_blocks
if merged_cluster_id > 0
samplesf{k}(merged_cluster_id,:,:,:) = merged_sample{k};
end
if new_cluster_id > 0
samplesf{k}(new_cluster_id,:,:,:) = new_cluster{k};
end
end
end
sample_weights = prior_weights;
train_tracker = (frame < params.skip_after_frame) || (frames_since_last_train >= params.train_gap);
if train_tracker && is_drift == 0
% Used for preconditioning
new_sample_energy = cellfun(@(xlf) abs(xlf .* conj(xlf)), xlf_proj, 'uniformoutput', false);
if frame == 1
if params.update_projection_matrix
hf = cell(2,1,num_feature_blocks);
lf_ind = cellfun(@(sz) sz(1) * (sz(2)-1)/2 + 1, filter_sz_cell, 'uniformoutput', false);
proj_energy = cellfun(@(P, yf) 2*sum(abs(yf(:)).^2) / sum(feature_dim) * ones(size(P), 'single'), projection_matrix, yf, 'uniformoutput', false);
else
hf = cell(1,1,num_feature_blocks);
end
% Initialize the filter
for k = 1:num_feature_blocks
hf{1,1,k} = complex(zeros([filter_sz(k,1) (filter_sz(k,2)+1)/2 compressed_dim(k)], 'single'));
end
% Initialize Conjugate Gradient parameters
CG_opts.maxit = params.init_CG_iter; % Number of initial iterations if projection matrix is not updated
init_CG_opts.maxit = ceil(params.init_CG_iter / params.init_GN_iter);
sample_energy = new_sample_energy;
rhs_samplef = cell(size(hf));
diag_M = cell(size(hf));
p = []; rho = []; r_old = [];
else
CG_opts.maxit = params.CG_iter;
if params.CG_forgetting_rate == inf || params.learning_rate >= 1
% CG will be reset
p = []; rho = []; r_old = [];
else
rho = rho / (1-params.learning_rate)^params.CG_forgetting_rate;
end
% Update the approximate average sample energy using the learning
% rate. This is only used to construct the preconditioner.
sample_energy = cellfun(@(se, nse) (1 - params.learning_rate) * se + params.learning_rate * nse, sample_energy, new_sample_energy, 'uniformoutput', false);
end
% Do training
if frame == 1 && params.update_projection_matrix
% Initial Gauss-Newton optimization of the filter and
% projection matrix.
% Construct stuff for the proj matrix part
init_samplef = cellfun(@(x) permute(x, [4 3 1 2]), xlf, 'uniformoutput', false);
init_samplef_H = cellfun(@(X) conj(reshape(X, size(X,2), [])), init_samplef, 'uniformoutput', false);
% Construct preconditioner
diag_M(1,1,:) = cellfun(@(m, reg_energy) (1-params.precond_reg_param) * bsxfun(@plus, params.precond_data_param * m, (1-params.precond_data_param) * mean(m,3)) + params.precond_reg_param*reg_energy, sample_energy, reg_energy, 'uniformoutput',false);
diag_M(2,1,:) = cellfun(@(m) params.precond_proj_param * (m + params.projection_reg), proj_energy, 'uniformoutput',false);
projection_matrix_init = projection_matrix;
for iter = 1:params.init_GN_iter
% Project sample with new matrix
init_samplef_proj = cellfun(@(x,P) mtimesx(x, P, 'speed'), init_samplef, projection_matrix, 'uniformoutput', false);
init_hf = cellfun(@(x) permute(x, [3 4 1 2]), hf(1,1,:), 'uniformoutput', false);
% Construct the right hand side vector for the filter part
rhs_samplef(1,1,:) = cellfun(@(xf, yf) bsxfun(@times, conj(permute(xf, [3 4 2 1])), yf), init_samplef_proj, yf, 'uniformoutput', false);
% Construct the right hand side vector for the projection matrix part
fyf = cellfun(@(f, yf) reshape(bsxfun(@times, conj(f), yf), [], size(f,3)), hf(1,1,:), yf, 'uniformoutput', false);
rhs_samplef(2,1,:) = cellfun(@(P, XH, fyf, fi) (2*real(XH * fyf - XH(:,fi:end) * fyf(fi:end,:)) - params.projection_reg * P), ...
projection_matrix, init_samplef_H, fyf, lf_ind, 'uniformoutput', false);
% Initialize the projection matrix increment to zero
hf(2,1,:) = cellfun(@(P) zeros(size(P), 'single'), projection_matrix, 'uniformoutput', false);
% do conjugate gradient
[hf, ~, ~, ~, res_norms_temp] = pcg_ccot(...
@(x) lhs_operation_joint(x, init_samplef_proj, reg_filter, feature_reg, init_samplef, init_samplef_H, init_hf, params.projection_reg),...
rhs_samplef, init_CG_opts, ...
@(x) diag_precond(x, diag_M), ...
[], hf);
% Make the filter symmetric (avoid roundoff errors)
hf(1,1,:) = symmetrize_filter(hf(1,1,:));
% Add to the projection matrix
projection_matrix = cellfun(@plus, projection_matrix, hf(2,1,:), 'uniformoutput', false);
res_norms = [res_norms; res_norms_temp];
end
% Extract filter
hf = hf(1,1,:);
% Re-project and insert training sample
xlf_proj = project_sample(xlf, projection_matrix);
for k = 1:num_feature_blocks
samplesf{k}(1,:,:,:) = permute(xlf_proj{k}, [4 3 1 2]);
end
if debug
norm_proj_mat_init = sqrt(sum(cellfun(@(P) norm(P(:))^2, projection_matrix_init)));
norm_proj_mat = sqrt(sum(cellfun(@(P) norm(P(:))^2, projection_matrix)));
norm_proj_mat_change = sqrt(sum(cellfun(@(P,P2) norm(P(:) - P2(:))^2, projection_matrix_init, projection_matrix)));
fprintf('Norm init: %f, Norm final: %f, Matrix change: %f\n', norm_proj_mat_init, norm_proj_mat, norm_proj_mat_change / norm_proj_mat_init);
end
else
% Construct the right hand side vector
rhs_samplef = cellfun(@(xf) permute(mtimesx(sample_weights, 'T', xf, 'speed'), [3 4 2 1]), samplesf, 'uniformoutput', false);
rhs_samplef = cellfun(@(xf, yf) bsxfun(@times, conj(xf), yf), rhs_samplef, yf, 'uniformoutput', false);
% Construct preconditioner
diag_M = cellfun(@(m, reg_energy) (1-params.precond_reg_param) * bsxfun(@plus, params.precond_data_param * m, (1-params.precond_data_param) * mean(m,3)) + params.precond_reg_param*reg_energy, sample_energy, reg_energy, 'uniformoutput',false);
% do conjugate gradient
[hf, ~, ~, ~, res_norms, p, rho, r_old] = pcg_ccot(...
@(x) lhs_operation(x, samplesf, reg_filter, sample_weights, feature_reg),...
rhs_samplef, CG_opts, ...
@(x) diag_precond(x, diag_M), ...
[], hf, p, rho, r_old);
end
% Reconstruct the full Fourier series
hf_full = full_fourier_coeff(hf);
frames_since_last_train = 0;
else
frames_since_last_train = frames_since_last_train+1;
end
% Update the scale filter
if nScales > 0 && params.use_scale_filter
scale_filter = scale_filter_update(im, pos, base_target_sz, currentScaleFactor, scale_filter, params);
end
% Update the target size (only used for computing output box)
target_sz = base_target_sz * currentScaleFactor;
% restore the size of bbox (narrowed before to avoid tracking drift)
target_sz(2) = target_sz(2) * 2.0;
%save position and calculate FPS
rect_position(frame,:) = round([pos([2,1]) - (target_sz([2,1]) - 1)/2, target_sz([2,1])]);
sampled_scores_display = fftshift(sample_fs(scores_fs(:,:,scale_ind), 10*output_sz));
pre_pos = tracker.eco.pos;
pre_target_sz = tracker.eco.target_sz;
bbox.x = double(pre_pos(2) - (pre_target_sz(2) - 1)/2);
bbox.y = double(pre_pos(1) - (pre_target_sz(1) - 1)/2);
bbox.w = pre_target_sz(2);
bbox.h = pre_target_sz(1);
if isempty(bboxes_det.fr) == 0
o = calc_overlap(bbox, 1, bboxes_det, 1:numel(bboxes_det.fr));
[overlap_box, index] = max(o);
pre_area = bbox.w * bbox.h;
cur_area = bboxes_det.w(index) * bboxes_det.h(index);
if overlap_box > opt.det_overlap_thre && max(bbox.h, bboxes_det.h(index))/min(bbox.h, bboxes_det.h(index)) <= 1.3
pos_det = single([bboxes_det.y(index) + (bboxes_det.h(index) - 1)/2, bboxes_det.x(index) + (bboxes_det.w(index) - 1)/2]);
target_sz_det = [bboxes_det.h(index), bboxes_det.w(index)];
pos = single(overlap_box * pos_det + (1 - overlap_box) * pos);
target_sz = overlap_box * target_sz_det + (1 - overlap_box) * target_sz;
end
end
% variables from ECO_initialize.m
tracker.eco.params = params;
tracker.eco.max_train_samples = max_train_samples;
tracker.eco.features = features;
tracker.eco.global_fparams = global_fparams;
tracker.eco.pos = pos;
tracker.eco.target_sz = target_sz;
tracker.eco.currentScaleFactor = currentScaleFactor;
tracker.eco.base_target_sz = base_target_sz;
tracker.eco.img_support_sz = img_support_sz;
tracker.eco.feature_dim = feature_dim;
tracker.eco.num_feature_blocks = num_feature_blocks;
tracker.eco.feature_reg = feature_reg;
tracker.eco.feature_extract_info = feature_extract_info;
tracker.eco.compressed_dim = compressed_dim;
tracker.eco.compressed_dim_cell = compressed_dim_cell;
tracker.eco.filter_sz = filter_sz;
tracker.eco.filter_sz_cell = filter_sz_cell;
tracker.eco.output_sz = output_sz;
tracker.eco.pad_sz = pad_sz;
tracker.eco.kx = kx;
tracker.eco.ky = ky;
tracker.eco.yf = yf;
tracker.eco.cos_window = cos_window;
tracker.eco.interp1_fs = interp1_fs;
tracker.eco.interp2_fs = interp2_fs;
tracker.eco.reg_filter = reg_filter;
tracker.eco.reg_energy = reg_energy;
tracker.eco.nScales = nScales;
tracker.eco.scaleFactors = scaleFactors;
tracker.eco.scale_filter = scale_filter;
tracker.eco.min_scale_factor = min_scale_factor;
tracker.eco.max_scale_factor = max_scale_factor;
tracker.eco.init_CG_opts = tracker.eco.init_CG_opts;
tracker.eco.CG_opts = CG_opts;
tracker.eco.rect_position = rect_position;
tracker.eco.prior_weights = prior_weights;
tracker.eco.sample_weights = sample_weights;
tracker.eco.samplesf = samplesf;
tracker.eco.score_matrix = score_matrix;
tracker.eco.latest_ind = latest_ind;
tracker.eco.frames_since_last_train = frames_since_last_train;
tracker.eco.num_training_samples = num_training_samples;
tracker.eco.minimum_sample_weight = minimum_sample_weight;
tracker.eco.res_norms = res_norms;
tracker.eco.is_color_image = is_color_image;
% variables which are useful when frame == 1
tracker.eco.sample_pos = sample_pos;
tracker.eco.sample_scale = sample_scale;
tracker.eco.xl = xl;
tracker.eco.xlf = xlf;
tracker.eco.projection_matrix = projection_matrix;
tracker.eco.shift_samp = shift_samp;
tracker.eco.xlf_proj = xlf_proj;
tracker.eco.hf = hf;
tracker.eco.lf_ind = lf_ind;
tracker.eco.proj_energy = proj_energy;
tracker.eco.sample_energy = sample_energy;
tracker.eco.rhs_samplef = rhs_samplef;
tracker.eco.diag_M = diag_M;
tracker.eco.p = p;
tracker.eco.rho = rho;
tracker.eco.r_old = r_old;
tracker.eco.init_samplef = init_samplef;
tracker.eco.init_samplef_H = init_samplef_H;
tracker.eco.projection_matrix_init = projection_matrix_init;
tracker.eco.init_samplef_proj = init_samplef_proj;
tracker.eco.init_hf = init_hf;
tracker.eco.fyf = fyf;
tracker.eco.res_norms_temp = res_norms_temp;
% other variables
tracker.eco.hf_full = hf_full;
tracker.eco.bb = double([pos([2,1]) - (target_sz([2,1]) - 1)/2, pos([2,1]) + (target_sz([2,1]) - 1)/2]);
tracker.eco.score = max(max(fftshift(sample_fs(scores_fs(:,:,scale_ind), 10*output_sz))));
if tracker.eco.score > opt.tracking_score_thre
tracker.eco.is_confident = 1;
else
tracker.eco.is_confident = 0;
end