-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathdemo.py
155 lines (123 loc) · 6.17 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
"""
Title: Depth-induced Multi-scale Recurrent Attention Network for Saliency Detection
Author: Wei Ji, Jingjing Li
E-mail: weiji.dlut@gmail.com
"""
import torch
from torch.autograd import Variable
from torch.utils.data import DataLoader
import torchvision
import torch.nn.functional as F
import torch.optim as optim
from dataset_loader import MyData, MyTestData
from model import RGBNet,DepthNet
from fusion import ConvLSTM
from functions import imsave
import argparse
from trainer import Trainer
import os
configurations = {
# same configuration as original work
# https://github.com/shelhamer/fcn.berkeleyvision.org
1: dict(
max_iteration=1000000,
lr=1.0e-10,
momentum=0.99,
weight_decay=0.0005,
spshot=20000,
nclass=2,
sshow=10,
)
}
parser=argparse.ArgumentParser()
parser.add_argument('--phase', type=str, default='test', help='train or test')
parser.add_argument('--param', type=str, default=True, help='path to pre-trained parameters')
# parser.add_argument('--train_dataroot', type=str, default='/home/jiwei-computer/Documents/Depth_data/train_data', help='path to train data')
parser.add_argument('--train_dataroot', type=str, default='/home/jiwei-computer/Documents/Depth_data/train_data-augment', help='path to train data')
parser.add_argument('--test_dataroot', type=str, default='/home/jiwei-computer/Documents/Depth_data/DUT-RGBD/test_data', help='path to test data')
# parser.add_argument('--test_dataroot', type=str, default='/home/jiwei-computer/Documents/Depth_data/NJUD/test_data', help='path to test data')
# parser.add_argument('--test_dataroot', type=str, default='/home/jiwei-computer/Documents/Depth_data/NLPR/test_data', help='path to test data')
# parser.add_argument('--test_dataroot', type=str, default='/home/jiwei-computer/Documents/Depth_data/LFSD', help='path to test data')
# parser.add_argument('--test_dataroot', type=str, default='/home/jiwei-computer/Documents/Depth_data/SSD', help='path to test data')
# parser.add_argument('--test_dataroot', type=str, default='/home/jiwei-computer/Documents/Depth_data/STEREO', help='path to test data')
# parser.add_argument('--test_dataroot', type=str, default='/home/jiwei-computer/Documents/Depth_data/RGBD135', help='path to test data') # Need to set dataset_loader.py/line 113
parser.add_argument('--snapshot_root', type=str, default='./snapshot', help='path to snapshot')
parser.add_argument('--salmap_root', type=str, default='./sal_map', help='path to saliency map')
parser.add_argument('-c', '--config', type=int, default=1, choices=configurations.keys())
args = parser.parse_args()
cfg = configurations[args.config]
cuda = torch.cuda.is_available()
"""""""""""~~~ dataset loader ~~~"""""""""
train_dataRoot = args.train_dataroot
test_dataRoot = args.test_dataroot
if not os.path.exists(args.snapshot_root):
os.mkdir(args.snapshot_root)
if not os.path.exists(args.salmap_root):
os.mkdir(args.salmap_root)
if args.phase == 'train':
SnapRoot = args.snapshot_root # checkpoint
train_loader = torch.utils.data.DataLoader(MyData(train_dataRoot, transform=True),
batch_size=2, shuffle=True, num_workers=4, pin_memory=True)
else:
MapRoot = args.salmap_root
test_loader = torch.utils.data.DataLoader(MyTestData(test_dataRoot, transform=True),
batch_size=1, shuffle=True, num_workers=4, pin_memory=True)
print ('data already')
""""""""""" ~~~nets~~~ """""""""
start_epoch = 0
start_iteration = 0
model_rgb = RGBNet(cfg['nclass'])
model_depth = DepthNet(cfg['nclass'])
model_clstm = ConvLSTM(input_channels=64, hidden_channels=[64, 32, 64],
kernel_size=5, step=4, effective_step=[2, 4, 8])
if args.param is True:
model_rgb.load_state_dict(torch.load(os.path.join(args.snapshot_root, 'snapshot_iter_1000000.pth')))
model_depth.load_state_dict(torch.load(os.path.join(args.snapshot_root, 'depth_snapshot_iter_1000000.pth')))
model_clstm.load_state_dict(torch.load(os.path.join(args.snapshot_root, 'clstm_snapshot_iter_1000000.pth')))
else:
vgg19_bn = torchvision.models.vgg19_bn(pretrained=True)
model_rgb.copy_params_from_vgg19_bn(vgg19_bn)
model_depth.copy_params_from_vgg19_bn(vgg19_bn)
if cuda:
model_rgb = model_rgb.cuda()
model_depth = model_depth.cuda()
model_clstm = model_clstm.cuda()
if args.phase == 'train':
# Trainer: class, defined in trainer.py
optimizer_rgb = optim.SGD(model_rgb.parameters(), lr=cfg['lr'],momentum=cfg['momentum'], weight_decay=cfg['weight_decay'])
optimizer_depth = optim.SGD(model_depth.parameters(), lr=cfg['lr'],momentum=cfg['momentum'], weight_decay=cfg['weight_decay'])
optimizer_clstm = optim.SGD(model_clstm.parameters(), lr=cfg['lr'],momentum=cfg['momentum'], weight_decay=cfg['weight_decay'])
training = Trainer(
cuda=cuda,
model_rgb=model_rgb,
model_depth=model_depth,
model_clstm=model_clstm,
optimizer_rgb=optimizer_rgb,
optimizer_depth=optimizer_depth,
optimizer_clstm=optimizer_clstm,
train_loader=train_loader,
max_iter=cfg['max_iteration'],
snapshot=cfg['spshot'],
outpath=args.snapshot_root,
sshow=cfg['sshow']
)
training.epoch = start_epoch
training.iteration = start_iteration
training.train()
else:
for id, (data, depth, img_name, img_size) in enumerate(test_loader):
print('testing bach %d' % (id+1))
inputs = Variable(data).cuda()
inputs_depth = Variable(depth).cuda()
n, c, h, w = inputs.size()
depth = inputs_depth.view(n, h, w, 1).repeat(1, 1, 1, c)
depth = depth.transpose(3, 1)
depth = depth.transpose(3, 2)
h1, h2, h3, h4, h5 = model_rgb(inputs) # RGBNet's output
depth_vector, d1, d2, d3, d4, d5 = model_depth(depth) # DepthNet's output
outputs_all = model_clstm(depth_vector, h1, h2, h3, h4, h5, d1, d2, d3, d4, d5) # Final output
outputs_all = F.softmax(outputs_all, dim=1)
outputs = outputs_all[0][1]
outputs = outputs.cpu().data.resize_(h, w)
imsave(os.path.join(MapRoot,img_name[0] + '.png'), outputs, img_size)
print('The testing process has finished!')