-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathadapt_single_video.py
130 lines (102 loc) · 3.66 KB
/
adapt_single_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import os
import itertools
import cv2
import torch
import torch.nn as nn
import torch.optim as optim
from tqdm import tqdm
import torch.utils.data as data
from src.data import create_dataloader, create_dataset
from src.models import create_model
from src.utils import make_exp_dirs, parse_options, Logger, tensor2img
from src.metrics import calculate_psnr, calculate_ssim
from src import losses
# parse options, set distributed setting, set random seed
opt = parse_options(is_train=True)
# mkdir and initialize loggers
make_exp_dirs(opt)
opt["save_dir"] = opt["path"]["visualization"]
logger = Logger(opt["path"]["log"], "log.txt")
logger.log_option(opt)
model = create_model(opt)
model.cuda()
if opt["evaluate"]:
base_dataset_opt = list(opt["base_dataset"].values())[0]
base_dataset = create_dataset(base_dataset_opt)
base_dataloader = create_dataloader(
base_dataset,
base_dataset_opt,
num_gpu=opt["num_gpu"],
dist=opt["dist"],
seed=opt["manual_seed"],
)
if len(base_dataloader) == 0:
logger.log(f"Failed to load dataset {base_dataset_opt['name']}. Aborting.")
exit(1)
logger.log(
f"Number of test images in {base_dataset_opt['name']}: "
f"{len(base_dataset.data_info['gt_path'])}\n"
)
adapt_dataset_opt = list(opt["adapt_dataset"].values())[0]
adapt_dataset = create_dataset(adapt_dataset_opt)
# adapt_dataloader = create_dataloader(
# adapt_dataset, adapt_dataset_opt, num_gpu=opt['num_gpu'], dist=opt['dist'], seed=opt['manual_seed'])
adapt_dataloader = data.DataLoader(
dataset=adapt_dataset, batch_size=opt["batch_size"], shuffle=False, num_workers=24
)
if len(adapt_dataloader) == 0:
logger.log(f"Failed to load dataset {adapt_dataset_opt['name']}. Aborting.")
exit(1)
logger.log(
f"Number of test images in {adapt_dataset_opt['name']}: "
f"{adapt_dataset.n_frame}\n"
)
folder = os.path.join(opt["save_dir"])
os.makedirs(folder + "/gt", exist_ok=True)
os.makedirs(folder + "/adapt", exist_ok=True)
criterion = losses.create_loss(opt["loss"]).cuda()
optimizer = optim.Adam(model.parameters(), lr=opt["learning_rate"])
model.train()
progress_bar = tqdm(total=opt["iterations"], desc="Adapting")
for i, data in enumerate(adapt_dataloader):
if i == opt["iterations"]:
break
lr, gt = data["lq"], data["gt"]
lr, gt = lr.cuda(), gt.cuda()
hr = model(lr)
loss = criterion(hr, gt)
optimizer.zero_grad()
loss.backward()
optimizer.step()
progress_bar.update()
if opt["evaluate"]:
### final evaluation
model.eval()
psnr_all = []
ssim_all = []
for i, data in enumerate(base_dataloader):
lr, gt = data["lq"], data["gt"]
lr, gt = lr.cuda(), gt.cuda()
with torch.no_grad():
hr = model(lr)
gt = tensor2img(gt)
hr = tensor2img(hr)
psnr = calculate_psnr(
gt, hr, crop_border=0, input_order="HWC", test_y_channel=True
)
ssim = calculate_ssim(
gt, hr, crop_border=0, input_order="HWC", test_y_channel=True
)
psnr_all.append(psnr)
ssim_all.append(ssim)
# Save image.
img_num = f"{i:08d}"
gt_img_path = os.path.join(folder, "gt", f"{img_num}_gt.png")
cv2.imwrite(gt_img_path, gt)
hr_img_path = str(os.path.join(folder, "adapt", f"{img_num}_adapt_"))
hr_img_path += f"psnr{int(100 * psnr)}_ssim{int(10000 * ssim)}.png"
cv2.imwrite(hr_img_path, hr)
# Print average metric value over a single dataset.
psnr_all = sum(psnr_all) / len(psnr_all)
ssim_all = sum(ssim_all) / len(ssim_all)
logger.log(f"Adaptation PSNR/SSIM: {psnr_all:.6f}/{ssim_all:.6f}")