Skip to content

Latest commit

 

History

History
104 lines (61 loc) · 2.49 KB

README.md

File metadata and controls

104 lines (61 loc) · 2.49 KB

UnRocking Drones : Foundattions of Acoustic Injection Attacks and Recovery Thereof (NDSS2023)

Requirements

Requirements are specified in "requirements.txt"

$pip install -r requirements.txt


Drone firmware

Our testbed is based on industry-leading opensource PX4 drone firmware.

Modified codes for acoustic injection tests

  • Resonant sensor models are implanted in sensor driver.
  • Attack parameters (induced frequency and attack amplitude) are connected to external commands.
  • Mavlink module was modified to interface with the external commands.

Modified codes for implication analysis

  • Additional logs : additional drone state variables, hardware timings are included.

Misc

  • ROMFS (ROM Filesystem) file was revised to commnicate with inference computer.

Automation Script

Iterative automated testing python code

Software-In-The-Loop(SITL) Automated Testing

  • It provides software only testing.

$cd UnRocker_FW

$./UnRocker_Gyro_SITL.py or $./UnRocker_Accel_SITL.py

Hardware-In-The-Loop(HITL) Automated Testing

  • Hardware related testing, so it requires the flight controller (FC).

$cd UnRocker_FW

$./UnRocker_Gyro_HITL.py or $./UnRocker_Accel_HITL.py

Automated Dataset Generation (HITL)

  • Automated Dataset Generation is based on HITL mode.

$cd UnRocker_FW

$./UnRocker_TestsetGen_HITL.py


UnRocker recovery

DAE design training

  • Denoising AutoEncoder (DAE) is our core network.

$cd UnRocker_DAE_Gyro or $cd UnRokcer_DAE_Accel

$python3 train_conv_autoeoncoder.py

Dataset

  • Automatically generated dataset from HITL.

Test Examples

  • Basic testset : Quadcopter Iris and Solo.
  • Drone flight test data
  • Actual injection test data

$cd UnRocker_DAE_Gyro or $cd UnRokcer_DAE_Accel

$python3 train_conv_autoeoncoder.py

Realtime Inference

  • Realtime inference code based on TensorRT

$cd UnRocker_DAE_Gyro or $cd UnRokcer_DAE_Accel

$python3 trt_inference.py


Reference

Citation

@inproceedings{jeong2023unrocker,

title={UnRocking Drones : Foundattions of Acoustic Injection Attacks and Recovery Thereof},

author={Jeong, Jinseob and Kim, Dongkwan and Jang, Joonha and Noh, Juhwan and Song, Changhun and Kim, Yongdae},

booktitle={Network and Distributed Systems Security (NDSS) Symposium},

year={2023}

}

Webpage

https://sites.google.com/view/unrocker/

Contact

e-mail: jeongjinseob@gmail.com