-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsm4.cpp
216 lines (198 loc) · 9.33 KB
/
sm4.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
#include "crypto.h"
#include <cassert>
// reference:
// https://tools.ietf.org/id/draft-crypto-sm4-00.html
// 6.2.1. Non-linear Transformation tau
const uint8_t sbox[] = {
0xD6, 0x90, 0xE9, 0xFE, 0xCC, 0xE1, 0x3D, 0xB7, 0x16, 0xB6, 0x14, 0xC2,
0x28, 0xFB, 0x2C, 0x05, 0x2B, 0x67, 0x9A, 0x76, 0x2A, 0xBE, 0x04, 0xC3,
0xAA, 0x44, 0x13, 0x26, 0x49, 0x86, 0x06, 0x99, 0x9C, 0x42, 0x50, 0xF4,
0x91, 0xEF, 0x98, 0x7A, 0x33, 0x54, 0x0B, 0x43, 0xED, 0xCF, 0xAC, 0x62,
0xE4, 0xB3, 0x1C, 0xA9, 0xC9, 0x08, 0xE8, 0x95, 0x80, 0xDF, 0x94, 0xFA,
0x75, 0x8F, 0x3F, 0xA6, 0x47, 0x07, 0xA7, 0xFC, 0xF3, 0x73, 0x17, 0xBA,
0x83, 0x59, 0x3C, 0x19, 0xE6, 0x85, 0x4F, 0xA8, 0x68, 0x6B, 0x81, 0xB2,
0x71, 0x64, 0xDA, 0x8B, 0xF8, 0xEB, 0x0F, 0x4B, 0x70, 0x56, 0x9D, 0x35,
0x1E, 0x24, 0x0E, 0x5E, 0x63, 0x58, 0xD1, 0xA2, 0x25, 0x22, 0x7C, 0x3B,
0x01, 0x21, 0x78, 0x87, 0xD4, 0x00, 0x46, 0x57, 0x9F, 0xD3, 0x27, 0x52,
0x4C, 0x36, 0x02, 0xE7, 0xA0, 0xC4, 0xC8, 0x9E, 0xEA, 0xBF, 0x8A, 0xD2,
0x40, 0xC7, 0x38, 0xB5, 0xA3, 0xF7, 0xF2, 0xCE, 0xF9, 0x61, 0x15, 0xA1,
0xE0, 0xAE, 0x5D, 0xA4, 0x9B, 0x34, 0x1A, 0x55, 0xAD, 0x93, 0x32, 0x30,
0xF5, 0x8C, 0xB1, 0xE3, 0x1D, 0xF6, 0xE2, 0x2E, 0x82, 0x66, 0xCA, 0x60,
0xC0, 0x29, 0x23, 0xAB, 0x0D, 0x53, 0x4E, 0x6F, 0xD5, 0xDB, 0x37, 0x45,
0xDE, 0xFD, 0x8E, 0x2F, 0x03, 0xFF, 0x6A, 0x72, 0x6D, 0x6C, 0x5B, 0x51,
0x8D, 0x1B, 0xAF, 0x92, 0xBB, 0xDD, 0xBC, 0x7F, 0x11, 0xD9, 0x5C, 0x41,
0x1F, 0x10, 0x5A, 0xD8, 0x0A, 0xC1, 0x31, 0x88, 0xA5, 0xCD, 0x7B, 0xBD,
0x2D, 0x74, 0xD0, 0x12, 0xB8, 0xE5, 0xB4, 0xB0, 0x89, 0x69, 0x97, 0x4A,
0x0C, 0x96, 0x77, 0x7E, 0x65, 0xB9, 0xF1, 0x09, 0xC5, 0x6E, 0xC6, 0x84,
0x18, 0xF0, 0x7D, 0xEC, 0x3A, 0xDC, 0x4D, 0x20, 0x79, 0xEE, 0x5F, 0x3E,
0xD7, 0xCB, 0x39, 0x48};
// taken from openssl
// preprocessed
// sbox_t[i] = L(sbox[i])
const uint32_t sbox_t[] = {
0x8ED55B5B, 0xD0924242, 0x4DEAA7A7, 0x06FDFBFB, 0xFCCF3333, 0x65E28787,
0xC93DF4F4, 0x6BB5DEDE, 0x4E165858, 0x6EB4DADA, 0x44145050, 0xCAC10B0B,
0x8828A0A0, 0x17F8EFEF, 0x9C2CB0B0, 0x11051414, 0x872BACAC, 0xFB669D9D,
0xF2986A6A, 0xAE77D9D9, 0x822AA8A8, 0x46BCFAFA, 0x14041010, 0xCFC00F0F,
0x02A8AAAA, 0x54451111, 0x5F134C4C, 0xBE269898, 0x6D482525, 0x9E841A1A,
0x1E061818, 0xFD9B6666, 0xEC9E7272, 0x4A430909, 0x10514141, 0x24F7D3D3,
0xD5934646, 0x53ECBFBF, 0xF89A6262, 0x927BE9E9, 0xFF33CCCC, 0x04555151,
0x270B2C2C, 0x4F420D0D, 0x59EEB7B7, 0xF3CC3F3F, 0x1CAEB2B2, 0xEA638989,
0x74E79393, 0x7FB1CECE, 0x6C1C7070, 0x0DABA6A6, 0xEDCA2727, 0x28082020,
0x48EBA3A3, 0xC1975656, 0x80820202, 0xA3DC7F7F, 0xC4965252, 0x12F9EBEB,
0xA174D5D5, 0xB38D3E3E, 0xC33FFCFC, 0x3EA49A9A, 0x5B461D1D, 0x1B071C1C,
0x3BA59E9E, 0x0CFFF3F3, 0x3FF0CFCF, 0xBF72CDCD, 0x4B175C5C, 0x52B8EAEA,
0x8F810E0E, 0x3D586565, 0xCC3CF0F0, 0x7D196464, 0x7EE59B9B, 0x91871616,
0x734E3D3D, 0x08AAA2A2, 0xC869A1A1, 0xC76AADAD, 0x85830606, 0x7AB0CACA,
0xB570C5C5, 0xF4659191, 0xB2D96B6B, 0xA7892E2E, 0x18FBE3E3, 0x47E8AFAF,
0x330F3C3C, 0x674A2D2D, 0xB071C1C1, 0x0E575959, 0xE99F7676, 0xE135D4D4,
0x661E7878, 0xB4249090, 0x360E3838, 0x265F7979, 0xEF628D8D, 0x38596161,
0x95D24747, 0x2AA08A8A, 0xB1259494, 0xAA228888, 0x8C7DF1F1, 0xD73BECEC,
0x05010404, 0xA5218484, 0x9879E1E1, 0x9B851E1E, 0x84D75353, 0x00000000,
0x5E471919, 0x0B565D5D, 0xE39D7E7E, 0x9FD04F4F, 0xBB279C9C, 0x1A534949,
0x7C4D3131, 0xEE36D8D8, 0x0A020808, 0x7BE49F9F, 0x20A28282, 0xD4C71313,
0xE8CB2323, 0xE69C7A7A, 0x42E9ABAB, 0x43BDFEFE, 0xA2882A2A, 0x9AD14B4B,
0x40410101, 0xDBC41F1F, 0xD838E0E0, 0x61B7D6D6, 0x2FA18E8E, 0x2BF4DFDF,
0x3AF1CBCB, 0xF6CD3B3B, 0x1DFAE7E7, 0xE5608585, 0x41155454, 0x25A38686,
0x60E38383, 0x16ACBABA, 0x295C7575, 0x34A69292, 0xF7996E6E, 0xE434D0D0,
0x721A6868, 0x01545555, 0x19AFB6B6, 0xDF914E4E, 0xFA32C8C8, 0xF030C0C0,
0x21F6D7D7, 0xBC8E3232, 0x75B3C6C6, 0x6FE08F8F, 0x691D7474, 0x2EF5DBDB,
0x6AE18B8B, 0x962EB8B8, 0x8A800A0A, 0xFE679999, 0xE2C92B2B, 0xE0618181,
0xC0C30303, 0x8D29A4A4, 0xAF238C8C, 0x07A9AEAE, 0x390D3434, 0x1F524D4D,
0x764F3939, 0xD36EBDBD, 0x81D65757, 0xB7D86F6F, 0xEB37DCDC, 0x51441515,
0xA6DD7B7B, 0x09FEF7F7, 0xB68C3A3A, 0x932FBCBC, 0x0F030C0C, 0x03FCFFFF,
0xC26BA9A9, 0xBA73C9C9, 0xD96CB5B5, 0xDC6DB1B1, 0x375A6D6D, 0x15504545,
0xB98F3636, 0x771B6C6C, 0x13ADBEBE, 0xDA904A4A, 0x57B9EEEE, 0xA9DE7777,
0x4CBEF2F2, 0x837EFDFD, 0x55114444, 0xBDDA6767, 0x2C5D7171, 0x45400505,
0x631F7C7C, 0x50104040, 0x325B6969, 0xB8DB6363, 0x220A2828, 0xC5C20707,
0xF531C4C4, 0xA88A2222, 0x31A79696, 0xF9CE3737, 0x977AEDED, 0x49BFF6F6,
0x992DB4B4, 0xA475D1D1, 0x90D34343, 0x5A124848, 0x58BAE2E2, 0x71E69797,
0x64B6D2D2, 0x70B2C2C2, 0xAD8B2626, 0xCD68A5A5, 0xCB955E5E, 0x624B2929,
0x3C0C3030, 0xCE945A5A, 0xAB76DDDD, 0x867FF9F9, 0xF1649595, 0x5DBBE6E6,
0x35F2C7C7, 0x2D092424, 0xD1C61717, 0xD66FB9B9, 0xDEC51B1B, 0x94861212,
0x78186060, 0x30F3C3C3, 0x897CF5F5, 0x5CEFB3B3, 0xD23AE8E8, 0xACDF7373,
0x794C3535, 0xA0208080, 0x9D78E5E5, 0x56EDBBBB, 0x235E7D7D, 0xC63EF8F8,
0x8BD45F5F, 0xE7C82F2F, 0xDD39E4E4, 0x68492121};
// 7.3.2. System Parameter FK
const uint32_t FK[4] = {0xA3B1BAC6, 0x56AA3350, 0x677D9197, 0xB27022DC};
// 7.3.3. Constant Parameter CK
const uint32_t CK[32] = {
0x00070E15, 0x1C232A31, 0x383F464D, 0x545B6269, 0x70777E85, 0x8C939AA1,
0xA8AFB6BD, 0xC4CBD2D9, 0xE0E7EEF5, 0xFC030A11, 0x181F262D, 0x343B4249,
0x50575E65, 0x6C737A81, 0x888F969D, 0xA4ABB2B9, 0xC0C7CED5, 0xDCE3EAF1,
0xF8FF060D, 0x141B2229, 0x30373E45, 0x4C535A61, 0x686F767D, 0x848B9299,
0xA0A7AEB5, 0xBCC3CAD1, 0xD8DFE6ED, 0xF4FB0209, 0x10171E25, 0x2C333A41,
0x484F565D, 0x646B7279};
// 6.2.1. Non-linear Transformation tau
inline uint32_t tau(uint32_t input) {
uint32_t output = 0;
for (int i = 0; i < 4; i++) {
output |= (uint32_t)sbox[(input >> (i * 8)) & 0xFF] << (i * 8);
}
return output;
}
// 6.3. Linear Substitution L
inline uint32_t l(uint32_t input) {
uint32_t input2 = (input << 2) | (input >> 30);
uint32_t input10 = (input << 10) | (input >> 22);
uint32_t input18 = (input << 18) | (input >> 14);
uint32_t input24 = (input << 24) | (input >> 8);
return input ^ input2 ^ input10 ^ input18 ^ input24;
}
// T(x) = l(tau(x))
inline uint32_t t(uint32_t input) { return l(tau(input)); }
// optimized of T(x)
// taken from openssl
inline uint32_t t_opt(uint32_t input) {
// avoid shifting 32bits
uint32_t output = sbox_t[(input >> 24) & 0xFF];
for (int i = 0; i < 3; i++) {
uint32_t t = sbox_t[(input >> (i * 8)) & 0xFF];
uint32_t rotate = ((i + 1) % 4) * 8;
output ^= (t << rotate) | (t >> (32 - rotate));
}
return output;
}
// 7.3.1. Transformation Function T'
inline uint32_t l1(uint32_t input) {
uint32_t input13 = (input << 13) | (input >> 19);
uint32_t input23 = (input << 23) | (input >> 9);
return input ^ input13 ^ input23;
}
void sm4_cbc(bool encrypt, const std::vector<uint8_t> &input,
const std::vector<uint8_t> &key, const std::vector<uint8_t> &iv,
std::vector<uint8_t> &output) {
// block size = 16 bytes
assert(iv.size() == 16);
assert((input.size() % 16) == 0);
output.resize(input.size());
// key size = 16 bytes
assert(key.size() == 16);
// key expansion
// 32 rounds
uint32_t k[32 + 4];
uint32_t rk[32];
// init K_0 to K_3
for (int i = 0; i < 4; i++) {
// K[i] = MK[i] ^ FK[i]
uint32_t mk = (key[4 * i] << 24) | (key[4 * i + 1] << 16) |
(key[4 * i + 2] << 8) | key[4 * i + 3];
k[i] = mk ^ FK[i];
}
for (int round = 0; round < 32; round++) {
// K_{i + 4} = K_i xor T'(K_{i + 1} ^ K_{i + 2} ^ K_{i + 3} ^ CK_i)
uint32_t temp = k[round + 1] ^ k[round + 2] ^ k[round + 3] ^ CK[round];
// rk_i = K_{i + 4}
k[round + 4] = k[round] ^ l1(tau(temp));
rk[round] = k[round + 4];
}
// convert iv to 4 32bit integer
uint64_t init_iv[4];
for (int i = 0; i < 4; i++) {
init_iv[i] = (iv[4 * i] << 24) | (iv[4 * i + 1] << 16) |
(iv[4 * i + 2] << 8) | iv[4 * i + 3];
}
// for each block
for (size_t offset = 0; offset < input.size(); offset += 16) {
uint32_t x[32 + 4];
// fill X_0 to X_3
for (int i = 0; i < 4; i++) {
x[i] = (input[offset + 4 * i] << 24) | (input[offset + 4 * i + 1] << 16) |
(input[offset + 4 * i + 2] << 8) | input[offset + 4 * i + 3];
if (encrypt) {
x[i] ^= init_iv[i];
}
}
for (int round = 0; round < 32; round++) {
// F(X_0, X_1, X_2, X_3, rk) = X_0 xor T(X_1 xor X_2 xor X_3 xor rk)
// X_{i+4} = F(X_i, X_{i+1}, X_{i+2}, X_{i+3}, rk_i)
uint32_t cur_rk = encrypt ? rk[round] : rk[31 - round];
x[round + 4] =
x[round] ^ t_opt(x[round + 1] ^ x[round + 2] ^ x[round + 3] ^ cur_rk);
}
// in decryption, xor plain text with iv
if (!encrypt) {
for (int i = 0; i < 4; i++) {
x[35 - i] ^= init_iv[i];
}
}
// (Y_0, Y_1, Y_2, Y_3) = R(X_32, X_33, X_34, X_35)
// R(X_32, X_33, X_34, X_35) = (X_35, X_34, X_33, X_32)
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
output[offset + 4 * i + j] = (x[35 - i] >> ((3 - j) * 8)) & 0xFF;
}
}
// in encryption, cipher text is used as new iv
if (encrypt) {
for (int i = 0; i < 4; i++) {
init_iv[i] = x[35 - i];
}
} else {
// in decryption, cipher text is used as new iv
for (int i = 0; i < 4; i++) {
init_iv[i] = x[i];
}
}
}
}