-
Notifications
You must be signed in to change notification settings - Fork 49
/
Copy pathtrain.py
123 lines (85 loc) · 3.61 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import torch
torch.manual_seed(1)
from model import *
from loading_data import *
from testing import *
from visualize import *
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
import argparse
def training():
for epoch in range(num_epochs): # iteration of epoch
i = 1
epoch_loss = 0
# training step
model.train()
while i <= 100: # iteration of unit
# fetch the data of unit i
x = group.get_group(i).to_numpy()
total_loss = 0
optim.zero_grad()
for t in range(x.shape[0] - 1):
if t == 0: # skip the first and last for convolution without padding
continue
else:
X = x[t - 1:t + 2, 2:-1] # fetch the 3 * 14 feature as input
y = x[t, -1:] # fetch the corresponding target rul as label
X_train_tensors = Variable(torch.Tensor(X))
y_train_tensors = Variable(torch.Tensor(y))
X_train_tensors_final = X_train_tensors.reshape(
(1, 1, X_train_tensors.shape[0], X_train_tensors.shape[1]))
# forward pass
outputs = model.forward(X_train_tensors_final, t)
# obtain the loss function
loss = criterion(outputs, y_train_tensors)
# summarize the loss
total_loss += loss.item()
loss = loss / (x.shape[0] - 2) # normalize the loss
loss.backward() # backward pass
# only update after finishing one unit
if t == x.shape[0] - 2: # Wait for several backward steps
optim.step() # Now we can do an optimizer step
optim.zero_grad() # Reset gradients tensors
i += 1
epoch_loss += total_loss / x.shape[0]
# evaluate model
model.eval()
with torch.no_grad():
rmse, result = testing(group_test, y_test, model)
print("Epoch: %d, training loss: %1.5f, testing rmse: %1.5f" % (epoch, epoch_loss / 100, rmse))
return result, rmse
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='FD001', help='which dataset to run')
opt = parser.parse_args()
num_epochs = 4 # Number of training epochs
d_model = 128 # dimension in encoder
heads = 4 # number of heads in multi-head attention
N = 2 # number of encoder layers
m = 14 # number of features
if opt.dataset == 'FD001':
# loading training and testing sets
group, y_test, group_test = loading_FD001()
#setting the drooput rate
dropout = 0.1
# define and load model
model = Transformer(m, d_model, N, heads, dropout)
# initialization
for p in model.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
# initialize Adam optimizer
optim = torch.optim.Adam(model.parameters(), lr=0.001)
# mean-squared error for regression
criterion = torch.nn.MSELoss()
# training with evaluation
result, rmse = training()
# testing already done in training() for each epoch to see live testing rmse, or
# can be done once after finish training
# model.eval()
# with torch.no_grad():
# rmse, result = testing(group_test, y_test, model)
# visualize the testing result
visualize(result, rmse)
else:
print('Either dataset not implemented or not defined')