-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtfrecord.py
210 lines (153 loc) · 5.98 KB
/
tfrecord.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
#! /usr/bin/python3
# -*- coding: utf-8 -*-
# @Time : 2018/4/12 0012 11:02
# @Author :
# @Software: PyCharm
import tensorflow as tf
import numpy as np
import os
import matplotlib.pyplot as plt
import skimage.io as io
def get_file(file_dir):
cover = []
label_cover = []
stego = []
label_stego = []
# 打标签
for file in os.listdir(file_dir):
# if file.endswith('0') or file.startswith('.'):
# continue # Skip!
name = file.split('.')
if name[0] == 'Cover':
cover.append(file_dir + file)
label_cover.append(0)
if name[0] == 'Stego':
stego.append(file_dir + file)
label_stego.append(1)
print("这里有 %d cover \n这里有 %d stego"
% (len(cover), len(stego)))
# 打乱文件顺序shuffle
image_list = np.hstack((cover, stego))
label_list = np.hstack((label_cover, label_stego))
temp = np.array([image_list, label_list])
temp = temp.transpose()
np.random.shuffle(temp)
image_list = list(temp[:, 0])
label_list = list(temp[:, 1])
label_list = [int(i) for i in label_list]
return image_list, label_list
# %%
def int64_feature(value):
"""Wrapper for inserting int64 features into Example proto."""
if not isinstance(value, list):
value = [value]
return tf.train.Feature(int64_list=tf.train.Int64List(value=value))
def bytes_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
# %%
def convert_to_tfrecord(images, labels, save_dir, name):
'''convert all images and labels to one tfrecord file.
Args:
images: list of image directories, string type
labels: list of labels, int type
save_dir: the directory to save tfrecord file, e.g.: '/home/folder1/'
name: the name of tfrecord file, string type, e.g.: 'train'
Return:
no return
Note:
converting needs some time, be patient...
'''
filename = os.path.join(save_dir, name + '.tfrecords')
n_samples = len(labels)
if np.shape(images)[0] != n_samples:
raise ValueError('Images size %d does not match label size %d.' % (images.shape[0], n_samples))
# wait some time here, transforming need some time based on the size of your data.
writer = tf.python_io.TFRecordWriter(filename)
print('\nTransform start......')
for i in np.arange(0, n_samples):
try:
image = io.imread(images[i]) # type(image) must be array!
image_raw = image.tostring()
label = int(labels[i])
example = tf.train.Example(features=tf.train.Features(feature={
'label': int64_feature(label),
'image_raw': bytes_feature(image_raw)}))
writer.write(example.SerializeToString())
except IOError as e:
print('Could not read:', images[i])
print('error: %s' % e)
print('Skip it!\n')
writer.close()
print('Transform done!')
# %%
def read_and_decode(tfrecords_file, batch_size):
'''read and decode tfrecord file, generate (image, label) batches
Args:
tfrecords_file: the directory of tfrecord file
batch_size: number of images in each batch
Returns:
image: 4D tensor - [batch_size, width, height, channel]
label: 1D tensor - [batch_size]
'''
# make an input queue from the tfrecord file
filename_queue = tf.train.string_input_producer([tfrecords_file])
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
img_features = tf.parse_single_example(
serialized_example,
features={
'label': tf.FixedLenFeature([], tf.int64),
'image_raw': tf.FixedLenFeature([], tf.string),
})
image = tf.decode_raw(img_features['image_raw'], tf.uint8)
##########################################################
# you can put data augmentation here, I didn't use it
##########################################################
# all the images of notMNIST are 28*28, you need to change the image size if you use other dataset.
image = tf.reshape(image, [512, 512])
label = tf.cast(img_features['label'], tf.int32)
image_batch, label_batch = tf.train.batch([image, label],
batch_size=batch_size,
num_threads=64,
capacity=2000)
return image_batch, tf.reshape(label_batch, [batch_size])
# %% Convert data to TFRecord
# test_dir = 'C://Users//Windows7//Documents//Python Scripts//notMNIST//notMNIST_small//'
test_dir = 'F://CAE_CNN//data//pgm_coverstego//'
# save_dir = 'C://Users//Windows7//Documents//Python Scripts//notMNIST//'
save_dir = 'F://CAE_CNN//data//'
BATCH_SIZE = 25
# Convert test data: you just need to run it ONCE !
name_test = 'test'
images, labels = get_file(test_dir)
convert_to_tfrecord(images, labels, save_dir, name_test)
# %% TO test train.tfrecord file
def plot_images(images, labels):
'''plot one batch size
'''
for i in np.arange(0, BATCH_SIZE):
plt.subplot(5, 5, i + 1)
plt.axis('off')
plt.title(chr(ord('A') + labels[i] - 1), fontsize=14)
plt.subplots_adjust(top=1.5)
plt.imshow(images[i])
plt.show()
# tfrecords_file = 'C://Users//Windows7//Documents//Python Scripts//notMNIST//test.tfrecords'
tfrecords_file = 'F://CAE_CNN//data//test.tfrecords'
image_batch, label_batch = read_and_decode(tfrecords_file, batch_size=BATCH_SIZE)
with tf.Session() as sess:
i = 0
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
try:
while not coord.should_stop() and i < 1:
# just plot one batch size
image, label = sess.run([image_batch, label_batch])
plot_images(image, label)
i += 1
except tf.errors.OutOfRangeError:
print('done!')
finally:
coord.request_stop()
coord.join(threads)
# %%