-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathKMeans.py
132 lines (101 loc) · 4.24 KB
/
KMeans.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import numpy as np
class KMeans:
"""
This class implements KMeans.
Args:
k(int): Amount of classes.
random_seed(int): Optional. Random seed for initialization.
Attributes:
KMeans.k(int): Amount of classes.
KMeans.random_seed: Optional. Random seed for initialization.
KMeans.means: Central value of each class.
KMeans.dimension: Amount of dimensions of each data.
Methods:
KMeans.fit: Fit model to the data.
KMeans.fit_predict: Fit model to the data, and return the class labels of data.
KMeans.predict: Use the trained model to predict the class labels of data.
"""
def __init__(self, k, random_seed=None):
"""
Constructor method
"""
self.k = k
self.random_seed = random_seed
self.means = None
self.dimension = None
def fit(self, x, max_iteration=100, terminate_condition=0.0):
"""
Fit model to the data.
Args:
x: Array-like. Contains training data.
max_iteration: Maximum times of iteration.
terminate_condition(float): A fraction. Terminate if this value of fraction of data converge. Default 0.
"""
self.fit_predict(x, max_iteration, terminate_condition)
def fit_predict(self, x, max_iteration=100, terminate_condition=0.0):
"""
Fit model to the data, and return the class labels of data.
Args:
x: Array-like. Contains training data.
max_iteration: Maximum times of iteration.
terminate_condition(float): A fraction. Terminate if this value of fraction of data converge. Default 0.
Raises:
ValueError("Amount of data can not be less than k")
Return:
Array of size[amount of data,], contains labels of data.
"""
x = np.array(x)
if x.ndim == 0:
x = np.reshape(x, [1, 1])
if x.ndim == 1:
x = np.reshape(x, [x.shape[0], 1])
self.dimension = x.shape[1]
if self.k > x.shape[0]:
raise ValueError("Amount of data can not be less than k")
if self.random_seed is not None:
np.random.seed(self.random_seed)
self.means = x[np.random.choice(x.shape[0], self.k, replace=False)]
labels = np.zeros(x.shape[0]).astype(np.int)
for i in range(max_iteration):
new_labels = self.__predict(x)
if np.sum(new_labels != labels) > terminate_condition / x.shape[0]:
labels = new_labels
else:
break
for j in range(self.k): # Re-calculate center of each class.
self.means[j] = np.average(x[labels == j], axis=0)
return labels
def predict(self, x):
"""
Use the trained model to predict the class labels of data.
Args:
x: Array-like. Contains data to be predicted.
Raises:
ValueError("Dimension not match."): data in x have different dimension with training data.
Return:
Array of size[amount of data,], contains labels of data.
"""
x = np.array(x)
if x.ndim == 0:
x = np.reshape(x, [1, 1])
if x.ndim == 1:
x = np.reshape(x, [x.shape[0], 1]) if self.dimension == 1 else np.reshape(x, [1, self.dimension])
if x.shape[1] != self.dimension:
raise ValueError("Dimension not match.")
return self.__predict(x)
def __predict(self, x):
"""
Predict the labels for input data, by calculating square Euclidean distance.
Args:
x: Array-like. Contains data to be predicted.
Return:
Array of size[amount of data,], contains labels of data.
"""
labels = np.zeros(x.shape[0]).astype(np.int)
distance = np.full(x.shape[0], np.inf)
for i in range(self.k):
current_distance = np.sum((x - self.means[i]) ** 2, axis=1)
mask = distance > current_distance
labels[mask] = i
distance[mask] = current_distance[mask]
return labels