-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathSnowPackEnergyBalance.c
executable file
·205 lines (168 loc) · 7.38 KB
/
SnowPackEnergyBalance.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
/*
* SUMMARY: SnowPackEnergyBalance.c - Calculate snow pack energy balance
* USAGE: Part of DHSVM
*
* AUTHOR: Bart Nijssen
* ORG: University of Washington, Department of Civil Engineering
* E-MAIL: nijssen@u.washington.edu
* ORIG-DATE: 8-Oct-1996 at 09:09:29
* DESCRIPTION: Calculate snow pack energy balance
* DESCRIP-END.
* FUNCTIONS: SnowPackEnergyBalance()
* COMMENTS:
* $Id: SnowPackEnergyBalance.c,v 1.4 2003/07/01 21:26:25 olivier Exp $
*/
#include <math.h>
#include <stdarg.h>
#include <stdlib.h>
#include "settings.h"
#include "constants.h"
#include "massenergy.h"
#include "snow.h"
#include "functions.h"
/*****************************************************************************
Function name: SnowPackEnergyBalance()
Purpose : Calculate the surface energy balance for the snow pack
Required :
float TSurf - new estimate of effective surface temperature
va_list ap - Argument list initialized by va_start(). For
elements of list and order, see beginning of
routine
Returns :
float RestTerm - Rest term in the energy balance
Modifies :
float *RefreezeEnergy - Refreeze energy (W/m2)
float *VaporMassFlux - Mass flux of water vapor to or from the
intercepted snow
Comments :
Reference: Bras, R. A., Hydrology, an introduction to hydrologic
science, Addisson Wesley, Inc., Reading, etc., 1990.
*****************************************************************************/
float SnowPackEnergyBalance(float TSurf, va_list ap)
{
/* start of list of arguments in variable argument list */
int Dt; /* Model time step (hours) */
float Ra; /* Aerodynamic resistance (s/m) */
float Z; /* Reference height (m) */
float Displacement; /* Displacement height (m) */
float Z0; /* Roughness length (m) */
float Wind; /* Wind speed (m/s) */
float ShortRad; /* Net incident shortwave radiation (W/m2) */
float LongRadIn; /* Incoming longwave radiation (W/m2) */
float AirDens; /* Density of air (kg/m3) */
float Lv; /* Latent heat of vaporization (J/kg3) */
float Tair; /* Air temperature (C) */
float Press; /* Air pressure (Pa) */
float Vpd; /* Vapor pressure deficit (Pa) */
float EactAir; /* Actual vapor pressure of air (Pa) */
float Rain; /* Rain fall (m/timestep) */
float SweSurfaceLayer; /* Snow water equivalent in surface layer (m)
*/
float SurfaceLiquidWater; /* Liquid water in the surface layer (m) */
float OldTSurf; /* Surface temperature during previous time
step */
float *RefreezeEnergy; /* Refreeze energy (W/m2) */
float *VaporMassFlux; /* Mass flux of water vapor to or from the
intercepted snow */
/* end of list of arguments in variable argument list */
float AdvectedEnergy; /* Energy advected by precipitation (W/m2) */
float DeltaColdContent; /* Change in cold content (W/m2) */
float EsSnow; /* saturated vapor pressure in the snow pack
(Pa) */
float LatentHeat; /* Latent heat exchange at surface (W/m2) */
float LongRadOut; /* long wave radiation emitted by surface
(W/m2) */
float Ls; /* Latent heat of sublimation (J/kg) */
float NetRad; /* Net radiation exchange at surface (W/m2) */
float RestTerm; /* Rest term in surface energy balance
(W/m2) */
float SensibleHeat; /* Sensible heat exchange at surface (W/m2) */
float TMean; /* Mean temperature during interval (C) */
double Tmp; /* temporary variable */
/* Assign the elements of the array to the appropriate variables. The list
is traversed as if the elements are doubles, because:
In the variable-length part of variable-length argument lists, the old
``default argument promotions'' apply: arguments of type float are
always promoted (widened) to type double, and types char and short int
are promoted to int. Therefore, it is never correct to invoke
va_arg(argp, float); instead you should always use va_arg(argp,
double).
(quoted from the comp.lang.c FAQ list)
*/
Dt = va_arg(ap, int);
Ra = (float) va_arg(ap, double);
Z = (float) va_arg(ap, double);
Displacement = (float) va_arg(ap, double);
Z0 = (float) va_arg(ap, double);
Wind = (float) va_arg(ap, double);
ShortRad = (float) va_arg(ap, double);
LongRadIn = (float) va_arg(ap, double);
AirDens = (float) va_arg(ap, double);
Lv = (float) va_arg(ap, double);
Tair = (float) va_arg(ap, double);
Press = (float) va_arg(ap, double);
Vpd = (float) va_arg(ap, double);
EactAir = (float) va_arg(ap, double);
Rain = (float) va_arg(ap, double);
SweSurfaceLayer = (float) va_arg(ap, double);
SurfaceLiquidWater = (float) va_arg(ap, double);
OldTSurf = (float) va_arg(ap, double);
RefreezeEnergy = (float *) va_arg(ap, double *);
VaporMassFlux = (float *) va_arg(ap, double *);
/* Calculate active temp for energy balance as average of old and new */
TMean = 0.5 * (OldTSurf + TSurf);
/* Correct aerodynamic conductance for stable conditions
Note: If air temp >> snow temp then aero_cond -> 0 (i.e. very stable)
velocity (vel_2m) is expected to be in m/sec */
/* Apply the stability correction to the aerodynamic resistance
NOTE: In the old code 2m was passed instead of Z-Displacement. I (bart)
think that it is more correct to calculate ALL fluxes at the same
reference level */
if (Wind > 0.0)
Ra /= StabilityCorrection(2.0f, 0.f, TMean, Tair, Wind, Z0);
else
Ra = DHSVM_HUGE;
/* Calculate longwave exchange and net radiation */
Tmp = TMean + 273.15;
LongRadOut = STEFAN * (Tmp * Tmp * Tmp * Tmp);
NetRad = ShortRad + LongRadIn - LongRadOut;
/* Calculate the sensible heat flux */
SensibleHeat = AirDens * CP * (Tair - TMean) / Ra;
/* Calculate the mass flux of ice to or from the surface layer */
/* Calculate the saturated vapor pressure in the snow pack,
(Equation 3.32, Bras 1990) */
EsSnow = SatVaporPressure(TMean);
*VaporMassFlux = AirDens * (EPS / Press) * (EactAir - EsSnow) / Ra;
*VaporMassFlux /= WATER_DENSITY;
if (fequal(Vpd, 0.0) && *VaporMassFlux < 0.0)
*VaporMassFlux = 0.0;
/* Calculate latent heat flux */
if (TMean >= 0.0) {
/* Melt conditions: use latent heat of vaporization */
LatentHeat = Lv * *VaporMassFlux * WATER_DENSITY;
}
else {
/* Accumulation: use latent heat of sublimation (Eq. 3.19, Bras 1990 */
Ls = (677. - 0.07 * TMean) * JOULESPCAL * GRAMSPKG;
LatentHeat = Ls * *VaporMassFlux * WATER_DENSITY;
}
/* Calculate advected heat flux from rain
WORK IN PROGRESS: Should the following read (Tair - Tsurf) ?? */
AdvectedEnergy = (CH_WATER * Tair * Rain) / Dt;
/* Calculate change in cold content */
DeltaColdContent = CH_ICE * SweSurfaceLayer * (TSurf - OldTSurf) / Dt;
/* Calculate net energy exchange at the snow surface */
RestTerm = NetRad + SensibleHeat + LatentHeat + AdvectedEnergy -
DeltaColdContent;
*RefreezeEnergy = (SurfaceLiquidWater * LF * WATER_DENSITY) / Dt;
if (fequal(TSurf, 0.0) && RestTerm > -(*RefreezeEnergy)) {
*RefreezeEnergy = -RestTerm; /* available energy input over cold content
used to melt, i.e. Qrf is negative value
(energy out of pack) */
RestTerm = 0.0;
}
else {
RestTerm += *RefreezeEnergy; /* add this positive value to the pack */
}
return RestTerm;
}