-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkruskalwallis.html
273 lines (252 loc) · 11.9 KB
/
kruskalwallis.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
<!DOCTYPE html>
<html>
<head>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-131282143-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-131282143-1');
</script>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<title>EZ Statistics: Kruskal-Wallis</title>
<meta name="description" content="EZ Statistics Kruskal-Wallis">
<link rel="stylesheet" href="style/stats.css">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.12.4/jquery.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery-csv/0.71/jquery.csv-0.71.min.js"></script>
<script src="https://cdn.plot.ly/plotly-latest.min.js"></script>
<script src="jstat.js"></script>
<script src="ezstatistics-0.30.js"></script>
</head>
<body>
<center><img class="round" src="style/logo.png" height="105"/></center>
<div style="text-align: right"><a href="index.html">Back to main page</a></div>
<h3 class="f18b">Kruskal-Wallis test</h3>
Requires that the samples are independent.<br> <br>
Tests the hypotheses:
<table>
<tr>
<th class="dark" width="30">H<sub>0</sub></th>
<td class="border">The means of the samples are equal </td>
</tr>
<tr>
<th class="dark">H<sub>1</sub></th>
<td class="border">The means of the samples are different </td>
</tr>
</table>
<div class="smalltext">
<div class="label16">
<h3 class="f16"> Data Entry</h3>
</div>
<br/>
<table>
<tr>
<td width="110">No samples:</td>
<td><input class="value" name="no" id="no" value="3"> <button onclick="javascript:update_no_samples()">Update</button></td>
</tr>
</table>
<table id="samples">
<tr>
<td width="110">Sample A:</td>
<td><input class="sample" name="sampA" id="samp1" value="498, 582, 527, 480, 549, 499, 580, 523, 480, 540"></td>
</tr>
<tr>
<td width="110">Sample B:</td>
<td><input class="sample" name="sampB" id="samp2" value="435, 360, 372, 413, 512, 430, 363, 370, 410, 583"></td>
</tr>
<tr>
<td width="110">Sample C:</td>
<td><input class="sample" name="sampC" id="samp3" value="608, 515, 601, 637, 554, 490, 518, 602, 603, 560"></td>
</tr>
</table>
<table>
<tr>
<td width="110">Significance level α</td>
<td><input class="value" name="alpha" id="alpha" value="0.05"></td>
</tr>
<tr>
<td width="110">Upload CSV file:</td>
<td>
<input type="file" name="File Upload" id="txtFileUpload" accept=".csv" />
</td>
</tr>
<tr>
<td width="110">Post-test:</td>
<td>
<select name="posttest" id="posttest">
<option value="dunn">Dunn's post-test</option>
<option value="wilcoxon">Wilcoxon pair-wise post-test</option>
</select>
Correction:
<select name="correction" id="correction">
<option value="none">None</option>
<option value="bonferroni">Bonferroni</option>
</select>
</td>
</tr>
</table>
<br>
<button class="test" onclick="javascript:run_kruskalwallis()">Run Test</button>
<button class="clear" onclick="javascript:clear_fields(-1)">Clear</button>
<div id="error">
</div>
<div id="test_results" style="display: none;">
<div class="label16">
<h3 class="f16"> Test Result</h3>
</div>
<br/>
<table class="border">
<thead>
<tr>
<th colspan=4 class="dark">Data Summary</th>
</tr>
<tr>
<th class="dark" width="70">Sample</th>
<th class="dark" width="40">N</th>
<th class="dark" width="100">Mean</th>
<th class="dark" width="100">Stdev</th>
</tr>
</thead>
<tbody id ="summary">
<tr>
<th class="dark">A</th>
<td class="border" id="n1"> </td>
<td class="border" id="mean1"> </td>
<td class="border" id="stdev1"> </td>
</tr>
<tr>
<th class="dark">B</th>
<td class="border" id="n2"> </td>
<td class="border" id="mean2"> </td>
<td class="border" id="stdev2"> </td>
</tr>
<tr>
<th class="dark">C</th>
<td class="border" id="n3"> </td>
<td class="border" id="mean3"> </td>
<td class="border" id="stdev3"> </td>
</tr>
</tbody>
</table>
<br>
<table class="border">
<thead>
<tr>
<th class="dark" width="550" colspan="2">Result</th>
</tr>
</thead>
<tbody>
<tr>
<td class="dark" width="130"><b>Significance level α:</b></td>
<td class="border" width="420" id="sign_level"> </td>
</tr>
<tr>
<td class="dark"><b>P-value:</b></td>
<td class="border" id="p"> </td>
</tr>
<tr>
<td class="dark"><b>H-score:</b></td>
<td class="border" id="h"> </td>
</tr>
<tr>
<td class="dark"><b>Result:</b></td>
<td class="border" id="res"> </td>
</tr>
</tbody>
</table>
<br>
<div id="postres">
<div class="label16">
<h3 class="f16"> Post-test</h3>
</div>
<br/>
The post-test shows which pairs of samples that have different means (if any).
<div id="post">
</div>
</div>
<div id="power">
<div class="label16">
<h3 class="f16"> Power Analysis <button class="help" onclick="javascript:toggle('pahelp')";>?</button></h3>
</div>
<div id="pahelp" style="display: none;">
<br>
The first table shows the minimum required sample sizes for low, medium and high statistical power respectively.
The second table shows the current statistical power for the samples and test type.
<p class="tab">The power and required sample sizes are for the pair of samples with the smallest difference in means.
The power analysis is affected by the correction specified for the post-test.</p>
</div>
<br>
<table class="border">
<thead>
<tr>
<th colspan=3 class="dark">Required sample sizes</th>
</tr>
<tr>
<th class="dark" width="120">Power</th>
<th class="dark" width="150">Min sample size</th>
</tr>
</thead>
<tbody>
<tr>
<td class="border">Low (20%)</td>
<td class="border" id="n_low"> </td>
</tr>
<tr>
<td class="border">Medium (50%)</td>
<td class="border" id="n_medium"> </td>
</tr>
<tr>
<td class="border">High (80%)</td>
<td class="border" id="n_high"> </td>
</tr>
</tbody>
</table>
<br>
<table class="border">
<thead>
<tr>
<th class="dark" width="150">Current power</th>
</tr>
</thead>
<tbody>
<tr>
<td class="border" id="pwr"> </td>
</tr>
</tbody>
</table>
</div>
<div id="assumptions">
<div class="label16">
<h3 class="f16"> Check test assumptions <button class="help" onclick="javascript:toggle('ashelp')";>?</button></h3>
</div>
<div id="ashelp" style="display: none;">
<br>
The test does not require that the samples are normally distributed. If they are, consider using <a href="anova.html">ANOVA</a> instead.
Note that the normality test is not entirely accurate for sample sizes under 20.
</div>
<br>
<div id="normtest">
<table class="border">
<thead>
<tr>
<th class="dark" width="550" colspan="2">Shapiro-Wilk test for normally distributed samples</th>
</tr>
</thead>
<tbody id="normtest_cont">
</tbody>
</table>
</div>
</div>
<div id="viz">
<div class="label16">
<h3 class="f16"> Data Visualization</h3>
</div>
<div id="chart"></div>
</div>
</div>
</div>
</body>
</html>