-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathupdate_words.py
96 lines (71 loc) · 2.75 KB
/
update_words.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
#!/usr/bin/env python
import sqlite3
import json
import os.path
from collections import Counter
from query_functions import TODAY
from feed_getter import SOURCES
from process_words import get_words, filter_words
HL_FILE = 'headlines.json'
HL_WORDS_FILE = 'headline_words.json'
JSON_PATH = 'data/json/'
DB_NAME = 'headline_words.db'
DB_PATH = 'data/'
def save_to_json(filename, words):
""" Save data to JSON file. """
with open(filename, 'w') as outfile:
json.dump(words, outfile)
def load_from_json(filename):
""" Get data from JSON file. """
with open(filename, 'r') as infile:
todays_words = json.load(infile)
return todays_words
def get_new_headlines(filename, headlines):
"""
Return headlines in the most recent result that
were not in the previous.
"""
if os.path.isfile(filename):
old_headlines = load_from_json(filename)
new_headlines = [x for x in headlines if x not in old_headlines]
else:
new_headlines = headlines[:]
return new_headlines
def add_to_database(db, words):
""" Add the words to the specified database. """
conn = sqlite3.connect(db, detect_types=sqlite3.PARSE_DECLTYPES|sqlite3.PARSE_COLNAMES)
conn.execute('CREATE TABLE IF NOT EXISTS hw(word TEXT, count INTEGER, date DATE)')
with conn:
for data in words:
word, count = data
data_to_add = (word, count, TODAY)
conn.execute('INSERT INTO hw VALUES (?,?,?)', data_to_add)
conn.close()
def main():
"""
For each headline source:
1. Pull in the source name and latest headlines.
2. Get headlines from the new batch that were not in the previous
3. Save the newly released headlines to json
If updated headlines were found:
1. Get word frequencies for those headlines
2. Save those frequencies to json, using source appropriate filename
3. Update the database of words for the current source
"""
for source in SOURCES:
name, headlines = source
headlines_filename = '_'.join([name, HL_FILE])
headlines_path = ''.join([JSON_PATH, headlines_filename])
new_headlines = get_new_headlines(headlines_path, headlines)
save_to_json(headlines_path, headlines)
if new_headlines:
word_frequencies = Counter(filter_words(name, get_words(new_headlines)))
new_words = word_frequencies.most_common()
new_words_filename = '_'.join([name, HL_WORDS_FILE])
new_words_path = ''.join([JSON_PATH, new_words_filename])
save_to_json(new_words_path, new_words)
db = '_'.join([name, DB_NAME])
db_path = ''.join([DB_PATH, db])
add_to_database(db_path, new_words)
if __name__ == '__main__':
main()