-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlab_relations_1.rkt~
237 lines (189 loc) · 7.77 KB
/
lab_relations_1.rkt~
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
#lang eopl
;;-------------------------------------------------------------------------------
;; Name:
;; Pledge:
;;-------------------------------------------------------------------------------
;; In this lab, you will write various functions which operate over relations.
;; We'll represent a relation as a set of pairs of numbers.
;; (NOTE: references to "pairs" in this lab refer to ordered lists of two numbers,
;; not the Scheme data structure of pairs.)
;; A set containing the pair (x y) means an edge points from x to y in the relation.
;;
;; Every relation in this lab will have a subset of the positive integers as its domain,
;; which will be written as [1, n]. Such a domain is the integers 1, 2, ..., n.
;;
;; Again, like in last lab, we'll use lists to represent sets,
;; but we won't let there be duplicate elements
;; and we won't care about the element order.
;; If a function you write outputs a relation
;; and your output doesn't have the same order as the examples, that's okay.
;;
;; This lab will build off of the previous lab.
;; At the bottom of this file, you'll find many helper functions,
;; all from the previous lab, to help you complete this one.
;; Implement "id" to accept an integer (which you may assume is positive)
;; and return the "identity relation" from 1 to n.
;; This means it should create a set
;; containing the pairs (1 1), (2 2), ..., (n n).
;;
;; Examples:
;; (id 1) -> '((1 1))
;; (id 5) -> '((1 1) (2 2) (3 3) (4 4) (5 5))
;;
;; Type Signature: (id int) -> relation
(define (id n)
"Not implemented")
;; Implement "reflexive?" to accept a relation R and a positive integer n,
;; and return whether R is reflexive over the domain [1, n].
;; In other words, R is reflexive iff it contains the the id relation up to n.
;; This can be implemented easily using id and one of the provided helper functions.
;;
;; Examples:
;; (reflexive? '((1 1) (2 2) (3 3)) 3) -> #t
;; (reflexive? '((1 1) (2 2) (3 3) (3 2) (2 3)) 3) -> #t
;; (reflexive? '((1 1) (2 2) (3 3)) 4) -> #f
;;
;; Type Signature: (reflexive? relation int) -> boolean
(define (reflexive? R n)
"Not implemented")
;; Implement "reflexive-closure" to accept a relation R and a positive integer n,
;; and return the reflexive closure of R with respect to the domain [1, n].
;; The reflexive closure of R is the smallest relation which
;; contains R and is reflextive over [1, n].
;;
;; Examples:
;; (reflexive-closure '() 3) -> '((1 1) (2 2) (3 3))
;; (reflexive-closure '((3 2) (2 3)) 3) -> '((1 1) (2 2) (3 3) (3 2) (2 3))
;; (reflexive-closure '((1 1) (2 2) (3 3)) 4) -> '((1 1) (2 2) (3 3) (4 4))
;;
;; Type Signature: (reflexive-closure relation int) -> relation
(define (reflexive-closure R n)
"Not implemented")
;; Implement "inverse", which accepts a relation R
;; and returns the inverse relation of R.
;; In other words, inverse changes every edge (x y) in R into (y x).
;; Scheme's "reverse" and "map" functions may be useful here.
;;
;; Examples:
;; (inverse '((1 2) (3 2) (4 5))) -> '((2 1) (2 3) (5 4))
;; (inverse '((1 1) (1 2) (1 3))) -> '((1 1) (2 1) (3 1))
;;
;; Type Signature: (inverse relation) -> relation
(define (inverse R)
"Not implemented")
;; Implement "symmetric?", which accepts a relation R
;; and returns whether R is symmetric.
;; R is symmetric iff for every pair (x y) in R,
;; R also contains the pair (y x).
;; This can be implemented easily using inverse
;; and one of the provided helper functions.
;;
;; Examples:
;; (symmetric? '((1 1) (2 1) (1 2))) -> #t
;; (symmetric? '((1 1) (2 4) (3 7) (3 5) (5 3))) -> #f
;; (symmetric? '((2 4) (4 3) (3 4) (4 2))) -> #t
;;
;; Type Signature: (reflexive? relation int) -> boolean
(define (symmetric? R)
"Not implemented")
;; Implement "symmetric-closure" to return the symmetric closure
;; of a given relation R.
;; The symmetric closure of R is the smallest relation
;; which is symmetric and contains R.
;; In other words, if R contains an edge (x y) but not the edge (y x),
;; the symmetric closure ought to contain both (x y) and (y x).
;; This can be implemented easily using inverse
;; and one of the provided helper functions.
;;
;; Examples:
;; (symmetric-closure '()) -> '()
;; (symmetric-closure '((3 2) (2 3))) -> '((3 2) (2 3))
;; (symmetric-closure '((1 2) (2 7) (3 4))) -> '((1 2) (2 7) (3 4) (2 1) (7 2) (4 3))
;;
;; Type Signature: (reflexive-closure relation) -> relation
(define (symmetric-closure R)
"Not implemented")
;; Implement "relates-to", which accepts a relation R and a vertex v
;; and returns the set of vertices to which v relates through R.
;; v relates to a vertex y through R iff the pair (v y) is in R.
;;
;; Examples:
;; (relates-to 3 '((3 3) (3 4) (3 5))) -> '(3 4 5)
;; (relates-to 1 '((1 2) (2 3) (3 4) (4 5))) -> '(2)
;; (relates-to 2 '((1 3) (3 5) (4 6) (8 7))) -> '()
;;
;; Type Signature: (relates-to vertex relation) -> set
(define (relates-to v R)
"Not implemented")
;;__________________________________________________________________________
;; Below are helper functions you may utilize for the functions you write!
;; Returns e ∈ L.
;; Type signature: (element? item list) -> boolean
(define (element? e L)
(member e L))
;; Returns L as a set (removes duplicates).
;; Type signature: (make-set list) -> set
(define (make-set L)
(cond [(null? L) '()]
[(member (car L) (cdr L)) (make-set (cdr L))]
[else (cons (car L) (make-set (cdr L)))]))
;; Returns the set of LA unioned with the set of LB.
;; Type signature: (union list list) -> set
(define (union LA LB)
(make-set (append LA LB)))
;; Returns the set of LA intersected with the set of LB.
;; Type signature: (intersection list list) -> set
(define (intersection LA LB)
(make-set (intersection-helper LA LB)))
(define (intersection-helper LA LB)
(cond [(null? LA) '()]
[(element? (car LA) LB)
(cons (car LA) (intersection-helper (cdr LA) LB))]
[else (intersection-helper (cdr LA) LB)]))
;; Returns SA ⊆ SB.
;; Type signature: (subset? set set) -> boolean
(define (subset? SA SB)
(cond [(null? SA) #t]
[(element? (car SA) SB)
(subset? (cdr SA) SB)]
[else #f]))
;; Returns whether SA and SB contain the same elements.
;; Type signature: (set-equal? set set) -> boolean
(define (set-equal? SA SB)
(and (subset? SA SB)
(subset? SB SA)))
;; Returns the difference of LA as a set and LB as a set.
;; Type signature: (set-difference list list) -> set
(define (set-difference LA LB)
(make-set (set-difference-helper LA LB)))
(define (set-difference-helper LA LB)
(cond [(null? LA) '()]
[(element? (car LA) LB)
(set-difference-helper (cdr LA) LB)]
[else (cons (car LA)
(set-difference-helper (cdr LA) LB))]))
;; Returns the symmetric difference of LA as a set and LB as a set.
;; Type signature: (sym-diff list list) -> set
(define (sym-diff LA LB)
(union (set-difference LA LB)
(set-difference LB LA)))
;; Returns the cardinality of L as a set.
;; Type signature: (cardinality list) -> int
(define (cardinality L)
(length (make-set L)))
;; Returns whether sets SA and SB are disjoint.
;; Type signature: (disjoint? set set) -> boolean
(define (disjoint? SA SB)
(null? (intersection SA SB)))
;; Returns SA ⊇ SB.
;; Type signature: (superset? set set) -> boolean
(define (superset? SA SB)
(subset? SB SA))
;; Returns the set of L, with e added to it.
;; Type signature: (insert element list) -> set
(define (insert e L)
(make-set (cons e L)))
;; Returns set S without element e.
;; Type signature: (remove element set) -> set
(define (remove e S)
(set-difference S (list e)))