-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathValidation.py
85 lines (70 loc) · 2.61 KB
/
Validation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
##
import matplotlib.pyplot as plt
##
def validation_metrics(df, y_true, y_pred, k_max= 15):
from sklearn.metrics import davies_bouldin_score
from sklearn.metrics import silhouette_score
from sklearn.metrics import adjusted_mutual_info_score
from sklearn.metrics import adjusted_rand_score
from sklearn.metrics import jaccard_similarity_score
DB= davies_bouldin_score(df, y_pred)
SC= silhouette_score(df, y_pred)
AMI= adjusted_mutual_info_score(y_true, y_pred, average_method='arithmetic')
ARI= adjusted_rand_score(y_true, y_pred)
JC = jaccard_similarity_score(y_true, y_pred, normalize=True)
return {'DB': DB, 'SC': SC, 'AMI': AMI, 'ARI': ARI, 'JC': JC}
##
#metric= validation_metrics(X, y_true, y_pred=pred)
##
def best_k(df, algo, config_file, k_max = 15):
"""
Models:
'1': 'KMeans',
'2': 'KMeans++',
'3': 'KMedoids',
'4': 'FuzzyCMeans',
'5': 'AggloSingle',
'6': 'AggloAverage',
'7': 'AggloComplete'
"""
from sklearn.cluster import KMeans
from config_loader import load, clf_names
from sklearn.metrics import silhouette_score
from MyKmeans import MyKmeans
from MyKmedoids import MyKmedoids
from MyFuzzyCmeans import MyFuzzyCmeans
from sklearn.cluster import AgglomerativeClustering
config = load(config_file)
tol = float(config.get('clustering', 'tol'))
max_rep = int(config.get('clustering', 'max_rep'))
fuzzy_m = int(config.get('clustering', 'fuzzy_m'))
kmeans_init_type = config.get('clustering', 'kmeans_init_type')
x = [1]
sil = [0]
for k in range(2, k_max + 1):
clf_options = {
'1': MyKmeans(k, tol, max_rep),
#'1': KMeans(n_clusters=k),
'2': MyKmeans(k, tol, max_rep, kmeans_init_type),
'3': MyKmedoids(k, tol, max_rep),
'4': MyFuzzyCmeans(k, tol, max_rep, fuzzy_m),
'5': AgglomerativeClustering(n_clusters=k, linkage='single'),
'6': AgglomerativeClustering(n_clusters=k, linkage='average'),
'7': AgglomerativeClustering(n_clusters=k, linkage='complete')
}
clf = clf_options.get(str(algo))
clf.fit(df)
pred = clf.labels_
x += [k]
sil += [silhouette_score(df, pred, metric='euclidean')]
clf_name = clf_names.get(str(algo))
plt.figure()
plt.plot(x, sil, color='green', marker='o')
plt.title('Silhouette Score ' + str(clf_name))
plt.xlabel('Number of Clusters')
plt.ylabel('Average Silhouette Score')
plt.ylim((0, 1))
plt.xlim((1, k_max+1))
return plt
##
#best_k(2)