-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathMyKmedoids.py
234 lines (198 loc) · 8.13 KB
/
MyKmedoids.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
from scipy.spatial.distance import euclidean
import pandas as pd
import numpy as np
from itertools import permutations
from time import time
from sklearn.metrics.pairwise import pairwise_distances
import matplotlib.pyplot as plt
class MyKmedoids:
def __init__(self, k=2, tol=0.01, max_rep=100):
self.k = k
self.tol = tol
self.max_rep = max_rep
self.name = 'KMedoids'
def init_medoids(self, data, init_type):
if init_type == 'random':
# np.random.seed(randint(1,42))
# seeds = np.random.randint(0, len(df), self.k)
if self.k < len(data):
seeds = np.random.choice(len(data), self.k, replace=False)
return seeds
else:
raise Exception('# of desired clusters should be < total data points')
def find_mindist(self, data, seed):
# print(self.medoids[seed])
# seed_df = pd.DataFrame([self.medoids[seed]]*len(df.index))
return distance_metric(data, self.medoids[seed])
def fit(self, dt):
if isinstance(dt, pd.DataFrame):
data = dt.values
elif isinstance(dt, np.ndarray):
data = dt
else:
raise Exception('dt should be a DataFrame or a numpy array')
# get random indexes from data
self.seeds = self.init_medoids(data, 'random')
self.clusters = {}
self.medoids = {}
for seed in range(self.k):
self.medoids[seed] = data[seed, :]
print('Calculate distance matrix')
start = time()
#distances = distance_matrix(data, data, p=2)
distances = pairwise_distances(data) #, data, p=2)
print('Duration for distance matrix: %s' %(time()-start))
converge = False
while self.max_rep > 0 and converge == False:
print(self.max_rep)
dist2medoids = np.array([distances[seed, :] for seed in self.seeds])
#dist2medoids = np.array([get_dp_distances(distances, seed) for seed in self.seeds])
# dist2medoids has k columns which correspond to the dist from each medoid
# dist_df = pd.concat(dist2medoids, axis=1).idxmin(axis=1)
self.labels_ = dist2medoids.argmin(axis=0)
for seed_index in range(self.k):
self.clusters[seed_index] = np.where(
self.labels_ == seed_index)[0]
prev_medoids = self.medoids.copy()
#prev_seeds = self.seeds
self.medoids = {}
new_seeds = []
for seed_index in range(self.k):
#clusters_sse = []
min_dp_cluster = None
medoid = None
cluster = self.clusters[seed_index]
for dp in cluster:
#dp_cluster_dist = sum(get_dp_distances(distances, dp, cluster))
dp_cluster_dist = distances[dp, cluster].sum()
# initial value of min_dp_cluster
if not min_dp_cluster:
min_dp_cluster = dp_cluster_dist
medoid = dp
if min_dp_cluster > dp_cluster_dist:
min_dp_cluster = dp_cluster_dist
medoid = dp
'''
clusters_sse.append(dp_cluster_dists)
for dp1, dp2 in permutations(self.clusters[seed_index], 2):
if dp1 == dp1_prev:
sum += calc_distances(distances, dp1, dp2)
else:
cluster_sse.append(sum)
sum = 0
dp1_prev = dp1
sum += calc_distances(distances, dp1, dp2)
#clusters_sse.append(sum)
new_cluster_seed = np.array(cluster_sse).argmin(axis=0)
new_seeds.append(
self.clusters[seed_index][new_cluster_seed])
'''
new_seeds.append(medoid)
self.medoids[seed_index] = data[medoid]
self.seeds = np.array(new_seeds)
#self.medoids = {seed_index:data[self.seeds[seed_index]]
# for seed_index in range(self.k)}
#self.centroids[seed] = data[self.clusters[seed]].mean(axis=0)
converge = True
for seed_index in range(self.k):
#if euclidean(prev_medoids[seed_index], self.medoids[seed_index]) <= self.tol:
dist_diff = np.linalg.norm(prev_medoids[seed_index]-self.medoids[seed_index],
ord=2)
if dist_diff <= self.tol:
converge = converge and True
else:
converge = converge and False
self.max_rep -= 1
print('Remaining repetitions: %s' %(self.max_rep))
self.inertia_ = 0
for seed in self.medoids:
self.inertia_ += np.array([self.find_mindist(data[self.clusters[seed]], seed)**2]).sum()
'''
def predict(self, df):
dist2medoids = [self.find_mindist(df, seed) for seed in self.medoids]
# dist2medoids has k columns which correspond to the dist from each centroid
dist_df = pd.concat(dist2medoids, axis=1).idxmin(axis=1)
for seed in self.medoids:
if (dist_df == seed)[0]:
return seed
'''
def get_dp_distances(distances, row_idx, *c_members_tup):
if len(c_members_tup) == 0:
'''
keys = np.array(list(distances.keys()))
x = np.where(
keys[:,0] == row_idx
)[0]
y = np.where(
keys[:,1] == row_idx
)[0]
dp = keys[np.append(x,y),:]
'''
dp_dists = map(lambda x: distances[x]
if x[0]==row_idx or x[1]==row_idx else None,
distances)
dp_dists = list(filter(None.__ne__, dp_dists))
else:
cluster_members = c_members_tup[0]
dp_dists = map(lambda x: distances[x]
if ((x[0] == row_idx and x[1] in cluster_members) or
(x[1] == row_idx and x[0] in cluster_members)) else None,
distances)
dp_dists = list(filter(None, dp_dists))
return dp_dists
def custom_distance_matrix(data):
rows, _ = data.shape
distances = {} #np.zeros([rows, rows]) #- 1
for rowid in range(rows):
for colid in range(rowid+1):
distances[(rowid, colid)] = np.linalg.norm(
data[rowid, :] - data[colid, :])
## copy lower diagonal values to the upper side
#index_upper = np.triu_indices(rows)
#distances[index_upper] = distances.T[index_upper]
return distances
def distance_metric(a, b, dist='Euclidean'):
"""
Define the distance metric used
This can be: 'Euclidean' (default)
"""
# a numpy matrix, b numpy vector of the centroid
if a.shape[1] == b.shape[0]:
"""
We assume that:
- the numerical values of a and are normalized
- a and b have the same columns from now on
"""
# a_num = a.select_dtypes(exclude='object')
# a_cat = a.select_dtypes(include='object')
## make the same size as a
# b_num = b.select_dtypes(exclude='object')
# b_cat = b.select_dtypes(include='object')
# print(a)
# print(a-b)
distance = ((a - b) ** 2).sum(axis=1)
# dist_cat = pd.DataFrame(np.where(a_cat==b_cat, 0, 1)).sum(axis=1)
# return (distance + dist_cat)**0.5
return distance ** 0.5
'''
data = np.array([[2,3],
[3,5],
[1,4],
[10,12],
[11,13],
[12,10]])
plt.scatter(data[:,0], data[:,1], s=100)
#lt.show()
df = pd.DataFrame(data)
clf = MyKmedoids(k=2)
clf.fit(df)
print(clf.clusters)
print(clf.medoids)
color = ['g','y','c']
print(clf.clusters)
for centroid in clf.medoids:
plt.scatter(clf.medoids[centroid][0], clf.medoids[centroid][1], marker='o', color=color[centroid])
plt.scatter(data[clf.clusters[centroid],0], data[clf.clusters[centroid],1], marker='+', color=color[centroid])
plt.show()
'''
#clf.predict(pd.DataFrame([[1,5]]))