-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcrypto_aes.c
807 lines (680 loc) · 25.2 KB
/
crypto_aes.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
/*
* FixBrowser v0.2 - https://www.fixbrowser.org/
* Copyright (c) 2018-2025 Martin Dvorak <jezek2@advel.cz>
*
* This software is provided 'as-is', without any express or implied warranty.
* In no event will the authors be held liable for any damages arising from
* the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include "browser.h"
// based on tiny-AES-c (revision 61fa5c1d28d8caaf430f92d15fce1e945404508f)
// https://github.com/kokke/tiny-AES-c (released to public domain)
// GCM code based on c-crumbs (revision 740b341c97653517e61b08384a91ca2b8b9eb16c)
// https://github.com/andrebdo/c-crumbs (released to public domain using unlicense.org)
#define Nb 4
enum {
TYPE_AES128,
TYPE_AES192,
TYPE_AES256
};
typedef struct {
int type;
int Nk, Nr;
uint8_t round_key[240];
uint8_t iv[16];
} AESState;
typedef uint8_t Matrix[4][4];
static const uint8_t sbox[256] = {
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16
};
static const uint8_t rsbox[256] = {
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d
};
static const uint8_t Rcon[11] = {
0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36
};
static void key_expansion(AESState *state, uint8_t *round_key, const uint8_t *key)
{
uint8_t tmp[4];
int i, j, k;
for (i=0; i<state->Nk; i++) {
round_key[(i * 4) + 0] = key[(i * 4) + 0];
round_key[(i * 4) + 1] = key[(i * 4) + 1];
round_key[(i * 4) + 2] = key[(i * 4) + 2];
round_key[(i * 4) + 3] = key[(i * 4) + 3];
}
for (i=state->Nk; i < Nb * (state->Nr + 1); i++) {
k = (i-1)*4;
tmp[0] = round_key[k+0];
tmp[1] = round_key[k+1];
tmp[2] = round_key[k+2];
tmp[3] = round_key[k+3];
if (i % state->Nk == 0) {
// Function RotWord()
k = tmp[0];
tmp[0] = tmp[1];
tmp[1] = tmp[2];
tmp[2] = tmp[3];
tmp[3] = k;
// Function Subword()
tmp[0] = sbox[tmp[0]];
tmp[1] = sbox[tmp[1]];
tmp[2] = sbox[tmp[2]];
tmp[3] = sbox[tmp[3]];
tmp[0] = tmp[0] ^ Rcon[i / state->Nk];
}
if (state->type == TYPE_AES256 && i % state->Nk == 4) {
// Function Subword()
tmp[0] = sbox[tmp[0]];
tmp[1] = sbox[tmp[1]];
tmp[2] = sbox[tmp[2]];
tmp[3] = sbox[tmp[3]];
}
j = i*4;
k = (i - state->Nk) * 4;
round_key[j+0] = round_key[k+0] ^ tmp[0];
round_key[j+1] = round_key[k+1] ^ tmp[1];
round_key[j+2] = round_key[k+2] ^ tmp[2];
round_key[j+3] = round_key[k+3] ^ tmp[3];
}
}
static void AES_init_state_iv(AESState *state, int type, const uint8_t *key, const uint8_t *iv)
{
state->type = type;
switch (type) {
case TYPE_AES128: state->Nk = 4; state->Nr = 10; break;
case TYPE_AES192: state->Nk = 6; state->Nr = 12; break;
case TYPE_AES256: state->Nk = 8; state->Nr = 14; break;
}
key_expansion(state, state->round_key, key);
if (iv) {
memcpy(state->iv, iv, 16);
}
}
static void add_round_key(int round, Matrix *mat, uint8_t *round_key)
{
int i, j;
for (i=0; i<4; i++) {
for (j=0; j<4; j++) {
(*mat)[i][j] ^= round_key[(round * Nb * 4) + (i * Nb) + j];
}
}
}
static void sub_bytes(Matrix *mat)
{
int i, j;
for (i=0; i<4; i++) {
for (j=0; j<4; j++) {
(*mat)[j][i] = sbox[(*mat)[j][i]];
}
}
}
static void shift_rows(Matrix *mat)
{
uint8_t tmp;
// rotate first row 1 columns to left:
tmp = (*mat)[0][1];
(*mat)[0][1] = (*mat)[1][1];
(*mat)[1][1] = (*mat)[2][1];
(*mat)[2][1] = (*mat)[3][1];
(*mat)[3][1] = tmp;
// rotate second row 2 columns to left:
tmp = (*mat)[0][2];
(*mat)[0][2] = (*mat)[2][2];
(*mat)[2][2] = tmp;
tmp = (*mat)[1][2];
(*mat)[1][2] = (*mat)[3][2];
(*mat)[3][2] = tmp;
// rotate third row 3 columns to left:
tmp = (*mat)[0][3];
(*mat)[0][3] = (*mat)[3][3];
(*mat)[3][3] = (*mat)[2][3];
(*mat)[2][3] = (*mat)[1][3];
(*mat)[1][3] = tmp;
}
static uint8_t xtime(uint8_t x)
{
return (x<<1) ^ (((x>>7) & 1) * 0x1b);
}
static void mix_columns(Matrix *mat)
{
uint8_t tmp0, tmp1, tmp2;
int i;
for (i=0; i<4; i++) {
tmp0 = (*mat)[i][0];
tmp1 = (*mat)[i][0] ^ (*mat)[i][1] ^ (*mat)[i][2] ^ (*mat)[i][3] ;
tmp2 = (*mat)[i][0] ^ (*mat)[i][1]; tmp2 = xtime(tmp2); (*mat)[i][0] ^= tmp2 ^ tmp1;
tmp2 = (*mat)[i][1] ^ (*mat)[i][2]; tmp2 = xtime(tmp2); (*mat)[i][1] ^= tmp2 ^ tmp1;
tmp2 = (*mat)[i][2] ^ (*mat)[i][3]; tmp2 = xtime(tmp2); (*mat)[i][2] ^= tmp2 ^ tmp1;
tmp2 = (*mat)[i][3] ^ tmp0; tmp2 = xtime(tmp2); (*mat)[i][3] ^= tmp2 ^ tmp1;
}
}
static uint8_t multiply(uint8_t x, uint8_t y)
{
return (((y & 1) * x) ^
((y>>1 & 1) * xtime(x)) ^
((y>>2 & 1) * xtime(xtime(x))) ^
((y>>3 & 1) * xtime(xtime(xtime(x)))) ^
((y>>4 & 1) * xtime(xtime(xtime(xtime(x))))));
}
static void inv_mix_columns(Matrix *mat)
{
uint8_t a, b, c, d;
int i;
for (i=0; i<4; i++) {
a = (*mat)[i][0];
b = (*mat)[i][1];
c = (*mat)[i][2];
d = (*mat)[i][3];
(*mat)[i][0] = multiply(a, 0x0e) ^ multiply(b, 0x0b) ^ multiply(c, 0x0d) ^ multiply(d, 0x09);
(*mat)[i][1] = multiply(a, 0x09) ^ multiply(b, 0x0e) ^ multiply(c, 0x0b) ^ multiply(d, 0x0d);
(*mat)[i][2] = multiply(a, 0x0d) ^ multiply(b, 0x09) ^ multiply(c, 0x0e) ^ multiply(d, 0x0b);
(*mat)[i][3] = multiply(a, 0x0b) ^ multiply(b, 0x0d) ^ multiply(c, 0x09) ^ multiply(d, 0x0e);
}
}
static void inv_sub_bytes(Matrix *mat)
{
int i, j;
for (i=0; i<4; i++) {
for (j=0; j<4; j++) {
(*mat)[j][i] = rsbox[(*mat)[j][i]];
}
}
}
static void inv_shift_rows(Matrix *mat)
{
uint8_t tmp;
// rotate first row 1 columns to right:
tmp = (*mat)[3][1];
(*mat)[3][1] = (*mat)[2][1];
(*mat)[2][1] = (*mat)[1][1];
(*mat)[1][1] = (*mat)[0][1];
(*mat)[0][1] = tmp;
// rotate second row 2 columns to right:
tmp = (*mat)[0][2];
(*mat)[0][2] = (*mat)[2][2];
(*mat)[2][2] = tmp;
tmp = (*mat)[1][2];
(*mat)[1][2] = (*mat)[3][2];
(*mat)[3][2] = tmp;
// rotate third row 3 columns to right:
tmp = (*mat)[0][3];
(*mat)[0][3] = (*mat)[1][3];
(*mat)[1][3] = (*mat)[2][3];
(*mat)[2][3] = (*mat)[3][3];
(*mat)[3][3] = tmp;
}
static void cipher(AESState *state, Matrix *mat, uint8_t *round_key)
{
int round;
add_round_key(0, mat, round_key);
for (round = 1; round < state->Nr; round++) {
sub_bytes(mat);
shift_rows(mat);
mix_columns(mat);
add_round_key(round, mat, round_key);
}
sub_bytes(mat);
shift_rows(mat);
add_round_key(state->Nr, mat, round_key);
}
static void inv_cipher(AESState *state, Matrix *mat, uint8_t *round_key)
{
int round;
add_round_key(state->Nr, mat, round_key);
for (round = (state->Nr - 1); round > 0; round--) {
inv_shift_rows(mat);
inv_sub_bytes(mat);
add_round_key(round, mat, round_key);
inv_mix_columns(mat);
}
inv_shift_rows(mat);
inv_sub_bytes(mat);
add_round_key(0, mat, round_key);
}
static void xor_with_iv(uint8_t *buf, uint8_t *iv)
{
int i;
for (i=0; i<16; i++) {
buf[i] ^= iv[i];
}
}
// Implements the AES-GCM authenticated encryption and decryption functions
// for 128-bit keys.
//
// References:
// [GCM] Recommendation for Block Cipher Modes of Operation:
// Galois/Counter Mode (GCM) and GMAC,
// NIST Special Publication 800-38D, November 2007
// http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
static void aes_encrypt_128(void *output, const void *input, const void *key)
{
AESState state;
AES_init_state_iv(&state, TYPE_AES128, key, NULL);
memcpy(output, input, 16);
cipher(&state, (Matrix *)output, state.round_key);
}
// Computes the multiplication of blocks X and Y and stores the result in X.
// x: pointer to 16 bytes (128 bits) of memory with X
// y: pointer to 16 bytes (128 bits) of memory with Y
//
// [GCM] 6.3 Multiplication Operation on Blocks
static void aes_gcm_mul(void *x, const void *y) {
unsigned char z[16];
unsigned char v[16];
unsigned char lsb1;
int i, j;
/* Step 2. Z0 = 0^128 and V0 = Y */
for (i = 0; i < 16; i++) {
z[i] = 0;
v[i] = ((unsigned char *)y)[i];
}
/*
* Step 3. For (bit) i = 0 to 127, calculate blocks Zi+1 and Vi+1 as follows:
* Zi+1 = Zi if xi = 0
* Zi+1 = Zi ^ Vi if xi = 1
* Vi+1 = Vi >> 1 if LSB1(Vi) = 0
* Vi+1 = (Vi >> 1) ^ R if LSB1(Vi) = 1
*/
for (i = 0; i < 128; i++) {
if (((unsigned char *)x)[i >> 3] & (0x80 >> (i & 7))) {
for (j = 0; j < 16; j++) {
z[j] ^= v[j];
}
}
lsb1 = v[15] & 1;
for (j = 15; j > 0; j--) {
v[j] = (v[j] >> 1) | (v[j-1] << 7);
}
v[0] >>= 1;
if (lsb1) {
v[0] ^= 0xe1; /* R = 11100001 || 0^128 */
}
}
/* Step 4. Return Z_128 */
for (i = 0; i < 16; i++) {
((unsigned char *)x)[i] = z[i];
}
}
// Calculates an authentication tag.
// tag: pointer to 16 bytes (128 bits) of memory to store the calculated tag
// iv: pointer to the initialization vector (12 bytes (96 bits))
// aad: pointer to the additional authenticated data
// aad_length: number of bytes of the additional authenticated data
// text: pointer to the text (plaintext or ciphertext)
// text_length: number of bytes of the text
// key: pointer to the encryption key (16 bytes (128 bits))
//
// Used internally by the aes_gcm_encrypt and aes_gcm_decrypt functions.
// Can also be called externally to calculate just a GMAC:
// aes_gcm_tag(gmac, iv, aad, aad_length, NULL, 0, key)
//
// [GCM] 6.4 GHASH Function
// [GCM] 6.5 GCTR Function
// [GCM] 7.1 Algorithm for the Authenticated Encryption Function
static void aes_gcm_tag(void *tag, const void *iv, const void *aad, int aad_length, const void *text, int text_length, const void *key) {
unsigned char h[16]; /* the hash subkey */
unsigned char j0[16]; /* the pre-counter block */
int i, j;
/* [GCM] 7.1 Step 1. H = CIPH_K(0^128) */
for (i = 0; i < 16; i++) {
h[i] = 0;
}
aes_encrypt_128(h, h, key);
/* [GCM] 7.1 Step 5. S = GHASH_H(A || 0^v || C || 0^u || len(A)64 || len(C)64) */
for (i = 0; i < 16; i++) {
((unsigned char *)tag)[i] = 0;
}
for (i = 0; i < aad_length; i += 16) {
for (j = 0; j < 16 && i + j < aad_length; j++) {
((unsigned char *)tag)[j] ^= ((unsigned char *)aad)[i + j];
}
aes_gcm_mul(tag, h);
}
for (i = 0; i < text_length; i += 16) {
for (j = 0; j < 16 && i + j < text_length; j++) {
((unsigned char *)tag)[j] ^= ((unsigned char *)text)[i + j];
}
aes_gcm_mul(tag, h);
}
/*
((unsigned char *)tag)[0] ^= aad_length >> 53;
((unsigned char *)tag)[1] ^= aad_length >> 45;
((unsigned char *)tag)[2] ^= aad_length >> 37;
*/
((unsigned char *)tag)[3] ^= aad_length >> 29;
((unsigned char *)tag)[4] ^= aad_length >> 21;
((unsigned char *)tag)[5] ^= aad_length >> 13;
((unsigned char *)tag)[6] ^= aad_length >> 5;
((unsigned char *)tag)[7] ^= aad_length << 3;
/*
((unsigned char *)tag)[8] ^= text_length >> 53;
((unsigned char *)tag)[9] ^= text_length >> 45;
((unsigned char *)tag)[10] ^= text_length >> 37;
*/
((unsigned char *)tag)[11] ^= text_length >> 29;
((unsigned char *)tag)[12] ^= text_length >> 21;
((unsigned char *)tag)[13] ^= text_length >> 13;
((unsigned char *)tag)[14] ^= text_length >> 5;
((unsigned char *)tag)[15] ^= text_length << 3;
aes_gcm_mul(tag, h);
/* [GCM] 7.1 Step 6. T = MSBt(GCTRk(J0,S)) */
for (i = 0; i < 12; i++) {
j0[i] = ((unsigned char *)iv)[i];
}
j0[12] = 0;
j0[13] = 0;
j0[14] = 0;
j0[15] = 1;
aes_encrypt_128(j0, j0, key);
for (i = 0; i < 16; i++) {
((unsigned char *)tag)[i] ^= j0[i];
}
}
// Implements the steps that are common to the encryption and decryption:
// steps 2 and 3 of the authenticated encryption function and
// steps 3 and 4 of the authenticated decryption function.
//
// output: pointer to input_length bytes of memory to store the ciphertext/plaintext
// iv: pointer to the 12-byte (96-bit) initialization vector
// input: pointer to the plaintext/ciphertext
// input_length: number of bytes of the input
// aad: pointer to the additional authenticated data
// aad_length: number of bytes of the additional authenticated data
// key: pointer to the 16-byte (128-bit) key
//
// [GCM] 7.1 Algorithm for the Authenticated Encryption Function
// [GCM] 7.2 Algorithm for the Authenticated Decryption Function
static void aes_gcm_encrypt_or_decrypt(void *output, const void *iv, const void *input, int input_length, const void *key) {
unsigned char cb[16]; /* the counter block CBi */
unsigned counter;
int i, m;
/* J0 = IV || 0^31 || 1 */
for (i = 0; i < 12; i++) {
cb[i] = ((unsigned char *)iv)[i];
}
counter = 1;
/* C = GCTR_K(inc32(J0), P) */
for (m = 0; m < input_length - 16; m += 16) {
/* [GCM] 6.5 GCTR Function, 5. For i = 2 to n, let CBi = inc32(CBi-1) */
counter++;
cb[12] = counter >> 24;
cb[13] = counter >> 16;
cb[14] = counter >> 8;
cb[15] = counter;
/* [GCM] 6.5 GCTR Function, 6. For i = 1 to n - 1, let Yi = Xi ^ CIPHk(CBi) */
aes_encrypt_128((unsigned char *)output + m, cb, key);
for (i = 0; i < 16; i++) {
((unsigned char *)output)[m + i] ^= ((unsigned char *)input)[m + i];
}
}
/* [GCM] 6.5 GCTR Function, Step 7. Let Yn = Xn ^ MSBlen(Xn)(CIPHk(CBn)) */
counter++;
cb[12] = counter >> 24;
cb[13] = counter >> 16;
cb[14] = counter >> 8;
cb[15] = counter;
aes_encrypt_128(cb, cb, key);
for (i = 0; i < input_length - m; i++) {
((unsigned char *)output)[m + i] = ((unsigned char *)input)[m + i] ^ cb[i];
}
}
// Implements the AES-GCM authenticated encryption algorithm.
//
// Outputs:
// ciphertext: pointer to plaintext_length bytes of memory to store the ciphertext
// tag: pointer to 16 bytes (128 bits) of memory to store the authentication tag
//
// Inputs:
// iv: pointer to the initialization vector (12 bytes (96 bits))
// plaintext: pointer to the plaintext
// plaintext_length: number of bytes of the plaintext
// aad: pointer to the additional authenticated data
// aad_length: number of bytes of the additional authenticated data
// key: pointer to the 16-byte (128-bit) key
//
// [GCM] 7.1 Algorithm for the Authenticated Encryption Function
static void aes_gcm_encrypt(void *ciphertext, void *tag, const void *iv, const void *plaintext, int plaintext_length, const void *aad, int aad_length, const void *key) {
/* Encrypt the plaintext */
aes_gcm_encrypt_or_decrypt(ciphertext, iv, plaintext, plaintext_length, key);
/* Calculate the tag */
aes_gcm_tag(tag, iv, aad, aad_length, ciphertext, plaintext_length, key);
}
// Implements the AES-GCM authenticated decryption algorithm.
//
// Outputs:
// plaintext: pointer to ciphertext_length bytes of memory to store the plaintext
//
// Inputs:
// iv: pointer to the initialization vector (12 bytes (96 bits))
// ciphertext: pointer to the ciphertext
// ciphertext_length: number of bytes of the ciphertext
// aad: pointer to the additional authenticated data
// aad_length: number of bytes of the additional authenticated data
// tag: pointer to the authentication tag
// tag_length: number of bytes of the authentication tag
// key: pointer to the 16-byte (128-bit () key
//
// Returns 0 on success, or -1 if the verification of the tag fails.
//
// [GCM] 7.2 Algorithm for the Authenticated Decryption Function
static int aes_gcm_decrypt(void *plaintext, const void *iv, const void *ciphertext, int ciphertext_length, const void *aad, int aad_length, const void *tag, int tag_length, const void *key) {
unsigned char t[16]; /* the calculated tag */
int i;
/* Check the tag */
aes_gcm_tag(t, iv, aad, aad_length, ciphertext, ciphertext_length, key);
for (i = 0; i < tag_length; i++) {
if (t[i] != ((unsigned char *)tag)[i]) {
return -1;
}
}
/* Decrypt the ciphertext */
aes_gcm_encrypt_or_decrypt(plaintext, iv, ciphertext, ciphertext_length, key);
return 0;
}
static Value crypto_aes_init(Heap *heap, Value *error, int num_params, Value *params, void *data)
{
uint8_t key[32];
uint8_t iv[16];
AESState *state;
Value state_val;
int err;
int type = (int)data;
int key_len = -1;
switch (type) {
case TYPE_AES128: key_len = 16; break;
case TYPE_AES192: key_len = 24; break;
case TYPE_AES256: key_len = 32; break;
}
err = fixscript_get_array_bytes(heap, params[0], 0, key_len, (char *)key);
if (err != FIXSCRIPT_SUCCESS) return fixscript_error(heap, error, err);
err = fixscript_get_array_bytes(heap, params[1], 0, 16, (char *)iv);
if (err != FIXSCRIPT_SUCCESS) return fixscript_error(heap, error, err);
state = malloc(sizeof(AESState));
if (!state) return fixscript_error(heap, error, FIXSCRIPT_ERR_OUT_OF_MEMORY);
state_val = fixscript_create_handle(heap, HANDLE_TYPE_AES_STATE, state, free);
if (!state_val.value) return fixscript_error(heap, error, FIXSCRIPT_ERR_OUT_OF_MEMORY);
AES_init_state_iv(state, type, key, iv);
return state_val;
}
static Value crypto_aes_cbc(Heap *heap, Value *error, int num_params, Value *params, void *data)
{
AESState *state;
uint8_t buf[16], next_iv[16];
int err;
state = fixscript_get_handle(heap, params[0], HANDLE_TYPE_AES_STATE, NULL);
if (!state) {
*error = fixscript_create_error_string(heap, "invalid AES handle");
return fixscript_int(0);
}
err = fixscript_get_array_bytes(heap, params[1], params[2].value, 16, (char *)buf);
if (err != FIXSCRIPT_SUCCESS) return fixscript_error(heap, error, err);
if ((int)data == 0) {
xor_with_iv(buf, state->iv);
cipher(state, (Matrix *)buf, state->round_key);
memcpy(state->iv, buf, 16);
}
else {
memcpy(next_iv, buf, 16);
inv_cipher(state, (Matrix *)buf, state->round_key);
xor_with_iv(buf, state->iv);
memcpy(state->iv, next_iv, 16);
}
err = fixscript_set_array_bytes(heap, params[1], params[2].value, 16, (char *)buf);
if (err != FIXSCRIPT_SUCCESS) return fixscript_error(heap, error, err);
return fixscript_int(0);
}
static Value crypto_aes_gcm(Heap *heap, Value *error, int num_params, Value *params, void *data)
{
int encrypt = ((int)data == 0);
char iv[12];
char key[16];
char tag[16];
char *input = NULL, *aad = NULL, *output = NULL;
Value ret = fixscript_int(0);
int input_len, aad_len, tag_len=0;
int err, decrypt_ret;
err = fixscript_get_array_bytes(heap, params[1], 0, 12, iv);
if (err) {
fixscript_error(heap, error, err);
goto error;
}
err = fixscript_get_array_bytes(heap, params[2], 0, 16, key);
if (err) {
fixscript_error(heap, error, err);
goto error;
}
if (!encrypt) {
err = fixscript_get_array_length(heap, params[4], &tag_len);
if (err) {
fixscript_error(heap, error, err);
goto error;
}
if (tag_len > 16) {
*error = fixscript_create_error_string(heap, "tag length is bigger than 16");
goto error;
}
err = fixscript_get_array_bytes(heap, params[4], 0, tag_len, tag);
if (err) {
fixscript_error(heap, error, err);
goto error;
}
}
err = fixscript_get_array_length(heap, params[0], &input_len);
if (err) {
fixscript_error(heap, error, err);
goto error;
}
input = malloc(input_len);
if (!input) {
fixscript_error(heap, error, FIXSCRIPT_ERR_OUT_OF_MEMORY);
goto error;
}
err = fixscript_get_array_bytes(heap, params[0], 0, input_len, input);
if (err) {
fixscript_error(heap, error, err);
goto error;
}
err = fixscript_get_array_length(heap, params[3], &aad_len);
if (err) {
fixscript_error(heap, error, err);
goto error;
}
aad = malloc(aad_len);
if (!aad) {
fixscript_error(heap, error, FIXSCRIPT_ERR_OUT_OF_MEMORY);
goto error;
}
err = fixscript_get_array_bytes(heap, params[3], 0, aad_len, aad);
if (err) {
fixscript_error(heap, error, err);
goto error;
}
output = malloc(input_len);
if (!output) {
fixscript_error(heap, error, FIXSCRIPT_ERR_OUT_OF_MEMORY);
goto error;
}
if (encrypt) {
aes_gcm_encrypt(output, tag, iv, input, input_len, aad, aad_len, key);
err = fixscript_set_array_bytes(heap, params[0], 0, input_len, output);
if (err) {
fixscript_error(heap, error, err);
goto error;
}
err = fixscript_set_array_bytes(heap, params[4], 0, 16, tag);
if (err) {
fixscript_error(heap, error, err);
goto error;
}
}
else {
decrypt_ret = aes_gcm_decrypt(output, iv, input, input_len, aad, aad_len, tag, tag_len, key);
err = fixscript_set_array_bytes(heap, params[0], 0, input_len, output);
if (err) {
fixscript_error(heap, error, err);
goto error;
}
ret = fixscript_int(decrypt_ret == 0);
}
error:
free(input);
free(aad);
free(output);
return ret;
}
void register_aes_functions(Heap *heap)
{
fixscript_register_native_func(heap, "crypto_aes128_init#2", crypto_aes_init, (void *)TYPE_AES128);
fixscript_register_native_func(heap, "crypto_aes192_init#2", crypto_aes_init, (void *)TYPE_AES192);
fixscript_register_native_func(heap, "crypto_aes256_init#2", crypto_aes_init, (void *)TYPE_AES256);
fixscript_register_native_func(heap, "crypto_aes_cbc_encrypt#3", crypto_aes_cbc, (void *)0);
fixscript_register_native_func(heap, "crypto_aes_cbc_decrypt#3", crypto_aes_cbc, (void *)1);
fixscript_register_native_func(heap, "crypto_aes_gcm_encrypt#5", crypto_aes_gcm, (void *)0);
fixscript_register_native_func(heap, "crypto_aes_gcm_decrypt#5", crypto_aes_gcm, (void *)1);
}