-
Notifications
You must be signed in to change notification settings - Fork 298
/
sgdw.py
122 lines (102 loc) · 3.97 KB
/
sgdw.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import torch
from torch.optim.optimizer import Optimizer
from .types import OptFloat, OptLossClosure, Params, State
__all__ = ("SGDW",)
class SGDW(Optimizer):
r"""Implements SGDW algorithm.
It has been proposed in `Decoupled Weight Decay Regularization`__.
Arguments:
params: iterable of parameters to optimize or dicts defining
parameter groups
lr: learning rate (default: 1e-3)
momentum: momentum factor (default: 0)
weight_decay: weight decay (L2 penalty) (default: 0)
dampening: dampening for momentum (default: 0)
nesterov: enables Nesterov momentum (default: False)
Example:
>>> import torch_optimizer as optim
>>> optimizer = optim.SGDW(model.parameters(), lr=0.1, momentum=0.9)
>>> optimizer.zero_grad()
>>> loss_fn(model(input), target).backward()
>>> optimizer.step()
__ https://arxiv.org/abs/1711.05101
Note:
Reference code: https://github.com/pytorch/pytorch/pull/22466
"""
def __init__(
self,
params: Params,
lr: float = 1e-3,
momentum: float = 0.0,
dampening: float = 0.0,
weight_decay: float = 0.0,
nesterov: bool = False,
) -> None:
if lr <= 0.0:
raise ValueError("Invalid learning rate: {}".format(lr))
if momentum < 0.0:
raise ValueError("Invalid momentum value: {}".format(momentum))
if dampening < 0.0:
raise ValueError("Invalid dampening value: {}".format(dampening))
if weight_decay < 0.0:
raise ValueError(
"Invalid weight_decay value: {}".format(weight_decay)
)
defaults = dict(
lr=lr,
momentum=momentum,
dampening=dampening,
weight_decay=weight_decay,
nesterov=nesterov,
)
if nesterov and (momentum <= 0 or dampening != 0):
raise ValueError(
"Nesterov momentum requires a momentum and zero dampening"
)
super(SGDW, self).__init__(params, defaults)
def __setstate__(self, state: State) -> None:
super(SGDW, self).__setstate__(state)
for group in self.param_groups:
group.setdefault("nesterov", False)
def step(self, closure: OptLossClosure = None) -> OptFloat:
"""Performs a single optimization step.
Arguments:
closure: A closure that reevaluates the model and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
weight_decay = group["weight_decay"]
momentum = group["momentum"]
dampening = group["dampening"]
nesterov = group["nesterov"]
for p in group["params"]:
if p.grad is None:
continue
d_p = p.grad.data
if p.grad.is_sparse:
msg = (
"SGDW does not support sparse gradients, "
"please consider SparseAdam instead"
)
raise RuntimeError(msg)
if momentum != 0:
param_state = self.state[p]
if "momentum_buffer" not in param_state:
buf = param_state["momentum_buffer"] = torch.clone(
d_p
).detach()
else:
buf = param_state["momentum_buffer"]
buf.mul_(momentum).add_(d_p, alpha=1 - dampening)
if nesterov:
d_p = d_p.add(momentum, buf)
else:
d_p = buf
# Apply momentum
p.data.add_(d_p, alpha=-group["lr"])
# Apply weight decay
if weight_decay != 0:
p.data.add_(weight_decay, alpha=-group["lr"])
return loss