This repository has been archived by the owner on Oct 16, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchapter_4.py
322 lines (264 loc) · 9.16 KB
/
chapter_4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
"""
Copyright Jeremy Nation <jeremy@jeremynation.me>.
Licensed under the MIT license.
Almost entirely copied from code created by Sebastian Raschka, also licensed under the MIT license.
"""
from io import StringIO
from itertools import combinations
import os
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn.base import clone
from sklearn.cross_validation import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import SelectFromModel
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import (
Imputer,
LabelEncoder,
MinMaxScaler,
OneHotEncoder,
StandardScaler,
)
def work_with_categorical_data():
df = pd.DataFrame([
['green', 'M', 10.1, 'class1'],
['red', 'L', 13.5, 'class2'],
['blue', 'XL', 15.3, 'class1'],
])
df.columns = ['color', 'size', 'price', 'class_label']
print(df, end='\n\n')
size_mapping = {
'XL': 3,
'L': 2,
'M': 1,
}
df['size'] = df['size'].map(size_mapping)
print(df, end='\n\n')
inv_size_mapping = {v: k for k, v in size_mapping.items()}
print(df['size'].map(inv_size_mapping), end='\n\n')
class_mapping = {
label: index
for index, label
in enumerate(np.unique(df['class_label']))
}
print(class_mapping, end='\n\n')
df['class_label'] = df['class_label'].map(class_mapping)
print(df, end='\n\n')
inv_class_mapping = {v: k for k, v in class_mapping.items()}
df['class_label'] = df['class_label'].map(inv_class_mapping)
print(df, end='\n\n')
class_label_encoder = LabelEncoder()
y = class_label_encoder.fit_transform(df['class_label'].values)
print(y, end='\n\n')
class_label_encoder.inverse_transform(y)
print(class_label_encoder.inverse_transform(y), end='\n\n')
X = df[['color', 'size', 'price']].values
color_label_encoder = LabelEncoder()
X[:, 0] = color_label_encoder.fit_transform(X[:, 0])
print(X, end='\n\n')
ohe = OneHotEncoder(categorical_features=[0])
print(ohe.fit_transform(X).toarray(), end='\n\n')
print(pd.get_dummies(df[['price', 'color', 'size']]), end='\n\n')
def work_with_numerical_data():
csv_data = """
A,B,C,D
1.0,2.0,3.0,4.0
5.0,6.0,,8.0
10.0,11.0,12.0,
"""
df = pd.read_csv(StringIO(csv_data))
print(df, end='\n\n')
print(df.isnull().sum(), end='\n\n')
print(df.values, end='\n\n')
print(df.dropna(), end='\n\n')
print(df.dropna(axis=1), end='\n\n')
print(df.dropna(how='all'), end='\n\n')
print(df.dropna(thresh=4), end='\n\n')
print(df.dropna(subset=['C']), end='\n\n')
imr = Imputer(missing_values='NaN', strategy='mean', axis=0)
imr = imr.fit(df)
imputed_data = imr.transform(df.values)
print(imputed_data)
def plot_regularization_path(columns, X, y):
fig = plt.figure()
ax = plt.subplot(111)
colors = [
'blue', 'green', 'red', 'cyan', 'magenta', 'yellow', 'black', 'pink',
'lightgreen', 'lightblue', 'gray', 'indigo', 'orange',
]
weights = []
params = []
for c in np.arange(-4, 6):
lr = LogisticRegression(penalty='l1', C=10**c, random_state=0)
lr.fit(X, y)
weights.append(lr.coef_[1])
params.append(10**c)
weights = np.array(weights)
for column, color in zip(range(weights.shape[1]), colors):
plt.plot(
params,
weights[:, column],
label=columns[column+1],
color=color,
)
plt.axhline(0, color='black', linestyle='--', linewidth=3)
plt.xlim([10**-5, 10**5])
plt.ylabel('weight coefficient')
plt.xlabel('C')
plt.xscale('log')
plt.legend(loc='upper left')
ax.legend(
loc='upper center',
bbox_to_anchor=(1.38, 1.03),
ncol=1,
fancybox=True,
)
plt.show()
def use_sbs_with_knn(columns, X_train, X_test, y_train, y_test):
knn = KNeighborsClassifier(n_neighbors=2)
sbs = SBS(knn, k_features=1)
sbs.fit(X_train, y_train)
k_feat = [len(k) for k in sbs.subsets_]
plt.plot(k_feat, sbs.scores_, marker='o')
plt.ylim([0.7, 1.1])
plt.ylabel('Accuracy')
plt.xlabel('Number of features')
plt.grid()
plt.show()
k5 = list(sbs.subsets_[8])
print(columns[1:][k5])
knn.fit(X_train, y_train)
print("Training accuracy: %s" % knn.score(X_train, y_train))
print("Test accuracy: %s" % knn.score(X_test, y_test))
knn.fit(X_train[:, k5], y_train)
print("Training accuracy: %s" % knn.score(X_train[:, k5], y_train))
print("Test accuracy: %s" % knn.score(X_test[:, k5], y_test))
def plot_feature_importances(columns, X_train, y_train):
feat_labels = columns[1:]
forest = RandomForestClassifier(n_estimators=10000, random_state=0)
forest.fit(X_train, y_train)
importances = forest.feature_importances_
indices = np.argsort(importances)[::-1]
for f in range(X_train.shape[1]):
print("%2d) %-*s %f" % (
f+1,
30,
feat_labels[indices[f]],
importances[indices[f]],
))
print()
plt.title('Feature Importances')
plt.bar(
range(X_train.shape[1]),
importances[indices],
color='lightblue',
align='center',
)
plt.xticks(range(X_train.shape[1]), feat_labels[indices], rotation=90)
plt.xlim([-1, X_train.shape[1]])
plt.show()
feature_selector = SelectFromModel(forest, threshold=0.15, prefit=True)
X_selected = feature_selector.transform(X_train)
print(X_selected.shape)
def work_with_wine_data():
df = pd.read_csv(os.path.join('datasets', 'wine.data'), header=None)
df.columns = [
'Class label',
'Alcohol',
'Malic acid',
'Ash',
'Alcalinity of ash',
'Magnesium',
'Total phenols',
'Flavanoids',
'Nonflavanoid phenols',
'Proanthocyanins',
'Color intensity',
'Hue',
'OD280/OD315 of diluted wines',
'Proline',
]
print('Class labels', np.unique(df['Class label']), end='\n\n')
print(df.head(), end='\n\n')
X = df.iloc[:, 1:].values
y = df.iloc[:, 0].values
X_train, X_test, y_train, y_test = train_test_split(
X,
y,
test_size=0.3,
random_state=0,
)
ex = pd.DataFrame([0, 1, 2, 3, 4, 5], dtype=np.float64)
ex[1] = StandardScaler().fit_transform(ex)
ex[2] = MinMaxScaler().fit_transform(ex[0].reshape(-1, 1))
ex.columns = ['input', 'standardized', 'normalized']
print(ex, end='\n\n')
min_max_scaler = MinMaxScaler()
X_train_norm = min_max_scaler.fit_transform(X_train)
X_test_norm = min_max_scaler.transform(X_test)
std_scaler = StandardScaler()
X_train_std = std_scaler.fit_transform(X_train)
X_test_std = std_scaler.transform(X_test)
lr = LogisticRegression(penalty='l1', C=0.1)
lr.fit(X_train_std, y_train)
print("Training accuracy: %s" % lr.score(X_train_std, y_train))
print("Test accuracy: %s" % lr.score(X_test_std, y_test))
print("Intercept: %s" % lr.intercept_)
print("Coefficients: %s" % lr.coef_)
# plot_regularization_path(df.columns, X_train_std, y_train)
# use_sbs_with_knn(df.columns, X_train_std, X_test_std, y_train, y_test)
plot_feature_importances(df.columns, X_train, y_train)
class SBS(object):
def __init__(
self,
estimator,
k_features,
scoring=accuracy_score,
test_size=0.25,
random_state=1):
self.estimator = clone(estimator)
self.k_features = k_features
self.scoring = scoring
self.test_size = test_size
self.random_state = random_state
def _calc_score(self, X_train, y_train, X_test, y_test, indices):
self.estimator.fit(X_train[:, indices], y_train)
y_pred = self.estimator.predict(X_test[:, indices])
score = self.scoring(y_test, y_pred)
return score
def fit(self, X, y):
X_train, X_test, y_train, y_test = train_test_split(
X,
y,
test_size=self.test_size,
random_state=self.random_state,
)
dim = X_train.shape[1]
self.indices_ = tuple(range(dim))
self.subsets_ = [self.indices_, ]
score = self._calc_score(X_train, y_train, X_test, y_test, self.indices_)
self.scores_ = [score, ]
while dim > self.k_features:
scores = []
subsets = []
for p in combinations(self.indices_, r=dim-1):
score = self._calc_score(X_train, y_train, X_test, y_test, p)
scores.append(score)
subsets.append(p)
best = np.argmax(scores)
self.indices_ = subsets[best]
self.subsets_.append(self.indices_)
dim -= 1
self.scores_.append(scores[best])
self.k_score_ = self.scores_[-1]
return self
def transform(self, X):
return X[:, self.indices_]
if __name__ == '__main__':
# work_with_numerical_data()
# work_with_categorical_data()
work_with_wine_data()