-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_panda.py
152 lines (129 loc) · 6.03 KB
/
test_panda.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# https://imitation.readthedocs.io/en/latest/tutorials/1_train_bc.html
import gym
import panda_gym
import torch
#from stable_baselines3 import PPO
from stable_baselines3.ppo import MlpPolicy
from stable_baselines3.ppo import PPO
from stable_baselines3.common.evaluation import evaluate_policy
from stable_baselines3.common.utils import get_device, is_vectorized_observation, obs_as_tensor
# from stable_baselines3.common.policies import obs_to_tensor
#import assistive_gym
import datetime
import os
import numpy as np
import imageio
import json
import pickle
import numpy as np
import copy
import argparse
import cv2
from bc_mlp import BC_custom
from ili_transformer.transformer_timeseries import TimeSeriesTransformer
# python test_panda.py --modelfile checkpoints/model_pandmagic_lr1e-4_.1epochratio.pt --modeltype magicalcnn
'''
cd /home/codysoccerman/Documents/classes/Fall_22/Deep_Learning/Project/rl-baselines3-zoo-master
conda activate assistive
python3 behavioral_cloning2.py
tensorboard --logdir logs/ppo/BedBathingStretch-v1
http://localhost:6006/
'''
def test_env(modelfile, modeltype, frame_size=(96,96), frames_per_clip=1):
environment = "PandaPickAndPlace-v1" #"CartPole-v1" #"PandaPickAndPlace-v1" #"CartPole-v1" #"BedBathingStretch-v1"# DrinkingStretch-v1 # #FetchReach-v1" #LunarLander-v2" # FetchSlide-V1
env = gym.make(environment, render=True) # "LunarLander-v2") # "CartPole-v1")
print("env made")
if (modeltype == 'mlp'):
model = BC_custom(input_size=25, output_size=4, net_arch=[32,32], extractor='flatten')
elif (modeltype == 'cnn'):
model = BC_custom(input_size=2048, output_size=4, net_arch=[32,32], extractor='cnn2')
elif (modeltype == 'magicalcnn'):
model = BC_custom(input_size=128, output_size=4, net_arch=[32,32], extractor='magicalcnn')
elif (modeltype == 'lstm'):
model = BC_custom(input_size=25, output_size=4, net_arch=[32,32], extractor='lstm')
elif (args.modeltype == 'transformer'):
model = BC_custom(input_size=25, output_size=4, net_arch=[32,32], extractor='transformer', num_frames=frames_per_clip)
elif (args.modeltype == 'magicalcnnlstm'):
model = BC_custom(input_size=128, output_size=4, net_arch=[32,32], extractor='magicalcnnlstm', freeze_cnn=False)
elif (args.modeltype == 'magicalcnntransformer'):
model = BC_custom(input_size=128, output_size=4, net_arch=[32,32], extractor='magicalcnntransformer', freeze_cnn=False, num_frames=frames_per_clip)
else:
print('modeltype {} not supported'.format(modeltype))
# Load the trained agent
print("Load the agent")
model.load_state_dict(torch.load(modelfile))
# model = MlpPolicy.load('./results/11-23_06_28-200epochs/model.pt')
# model = PPO.load('/home/alanhesu/Documents/github/vroom/rl-baselines3-zoo-master/my_models/backup/PandaPickAndPlace-v1.pkl', env=env)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = model.to(device)
model.eval()
# Enjoy trained agent
episode_reward = 0
# for i in range(0, frames_per_clip):
# X_seq.append(torch.zeros(25))
obs = env.reset()
reward_list = []
X_seq = reset_seq(frames_per_clip, modeltype, frame_size)
for i in range(10000):
X = copy.deepcopy(obs)
X = np.concatenate((X['achieved_goal'], X['desired_goal'], X['observation']))
X = torch.from_numpy(X)
X = X.float()
if (modeltype == 'mlp'):
X_input = X # for flatten
elif (modeltype == 'lstm' or modeltype == 'transformer'):
X_seq.append(X) # for lstm
if (len(X_seq) > frames_per_clip):
X_seq.pop(0)
X_input = torch.stack(X_seq, dim=0)
elif (modeltype == 'cnn' or modeltype == 'magicalcnn' or modeltype == 'magicalcnnlstm' or modeltype == 'magicalcnntransformer'):
X_input = env.render('rgb_array')[:,:,:3]
X_input = cv2.resize(X_input, frame_size)
# let's swap the channels
ch1 = X_input[:,:,0].copy()
X_input[:,:,0] = X_input[:,:,2]
X_input[:,:,2] = ch1
X_input = torch.from_numpy(X_input)
X_input = X_input.permute(2, 0, 1)
X_input = X_input.float() / 255.0
if (modeltype == 'magicalcnnlstm' or modeltype == 'magicalcnntransformer'):
X_seq.append(X_input)
if (len(X_seq) > frames_per_clip):
X_seq.pop(0)
X_input = torch.stack(X_seq, dim=0)
X_input = X_input[None,:]
X_input = X_input.to(device)
action, _, _ = model(X_input)
action = torch.squeeze(action, dim=0)
action = action.detach().cpu().numpy()
# action, _ = model.predict(obs)
# env.render()
obs, rewards, dones, info = env.step(action)
episode_reward = episode_reward + rewards
if dones:
# print("episode_reward: ", episode_reward)
reward_list.append(episode_reward)
episode_reward = 0
# print("reset")
obs = env.reset()
X_seq = reset_seq(frames_per_clip, modeltype, frame_size)
#time.sleep(1/30)
print('average reward: {}'.format(np.mean(reward_list)))
print('num trials: {}'.format(len(reward_list)))
print('number successes: {}'.format(len(reward_list) - np.sum(np.array(reward_list) == -50.0)))
env.close()
def reset_seq(num_frames, modeltype, frame_size):
X_seq = []
for i in range(0, num_frames):
if (modeltype == 'lstm' or modeltype == 'transformer'):
X_seq.append(torch.zeros(25).float())
elif (modeltype == 'magicalcnnlstm' or modeltype == 'magicalcnntransformer'):
X_seq.append(torch.zeros((3, frame_size[0], frame_size[1])).float())
return X_seq
frame_size = (96, 96)
frames_per_clip = 5
parser = argparse.ArgumentParser()
parser.add_argument('--modelfile', type=str, required=True)
parser.add_argument('--modeltype', type=str, required=True)
args = parser.parse_args()
test_env(args.modelfile, args.modeltype, frame_size=frame_size, frames_per_clip=frames_per_clip)