From fec348ac0a50688ed916699bc892e269730c1445 Mon Sep 17 00:00:00 2001 From: "Joseph K. Bradley" Date: Thu, 5 Feb 2015 17:02:54 -0800 Subject: [PATCH] Added JavaDeveloperApiExample.java and fixed other issues: Made developer API private[spark] for now. Added constructors Java can understand to specialized Param types. --- .../ml/JavaCrossValidatorExample.java | 2 + .../examples/ml/JavaDeveloperApiExample.java | 217 ++++++++++++++++++ .../examples/ml/JavaSimpleParamsExample.java | 2 + .../JavaSimpleTextClassificationPipeline.java | 2 + .../spark/ml/classification/Classifier.scala | 13 +- .../classification/LogisticRegression.scala | 73 +++++- .../ProbabilisticClassifier.scala | 8 +- .../spark/ml/impl/estimator/Predictor.scala | 10 +- .../org/apache/spark/ml/param/params.scala | 20 +- .../spark/ml/regression/Regressor.scala | 12 +- 10 files changed, 343 insertions(+), 16 deletions(-) create mode 100644 examples/src/main/java/org/apache/spark/examples/ml/JavaDeveloperApiExample.java diff --git a/examples/src/main/java/org/apache/spark/examples/ml/JavaCrossValidatorExample.java b/examples/src/main/java/org/apache/spark/examples/ml/JavaCrossValidatorExample.java index 7fc44739b6ca7..5041e0b6d34b0 100644 --- a/examples/src/main/java/org/apache/spark/examples/ml/JavaCrossValidatorExample.java +++ b/examples/src/main/java/org/apache/spark/examples/ml/JavaCrossValidatorExample.java @@ -121,5 +121,7 @@ public static void main(String[] args) { System.out.println("(" + r.get(0) + ", " + r.get(1) + ") --> prob=" + r.get(2) + ", prediction=" + r.get(3)); } + + jsc.stop(); } } diff --git a/examples/src/main/java/org/apache/spark/examples/ml/JavaDeveloperApiExample.java b/examples/src/main/java/org/apache/spark/examples/ml/JavaDeveloperApiExample.java new file mode 100644 index 0000000000000..42d4d7d0bef26 --- /dev/null +++ b/examples/src/main/java/org/apache/spark/examples/ml/JavaDeveloperApiExample.java @@ -0,0 +1,217 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.examples.ml; + +import java.util.List; + +import com.google.common.collect.Lists; + +import org.apache.spark.SparkConf; +import org.apache.spark.api.java.JavaRDD; +import org.apache.spark.api.java.JavaSparkContext; +import org.apache.spark.ml.classification.Classifier; +import org.apache.spark.ml.classification.ClassificationModel; +import org.apache.spark.ml.param.IntParam; +import org.apache.spark.ml.param.ParamMap; +import org.apache.spark.ml.param.Params; +import org.apache.spark.ml.param.Params$; +import org.apache.spark.mllib.linalg.BLAS; +import org.apache.spark.mllib.linalg.Vector; +import org.apache.spark.mllib.linalg.Vectors; +import org.apache.spark.mllib.regression.LabeledPoint; +import org.apache.spark.sql.DataFrame; +import org.apache.spark.sql.Row; +import org.apache.spark.sql.SQLContext; + + +/** + * A simple example demonstrating how to write your own learning algorithm using Estimator, + * Transformer, and other abstractions. + * This mimics {@link org.apache.spark.ml.classification.LogisticRegression}. + * + * Run with + *
+ * bin/run-example ml.JavaDeveloperApiExample
+ * 
+ */ +public class JavaDeveloperApiExample { + + public static void main(String[] args) throws Exception { + SparkConf conf = new SparkConf().setAppName("JavaDeveloperApiExample"); + JavaSparkContext jsc = new JavaSparkContext(conf); + SQLContext jsql = new SQLContext(jsc); + + // Prepare training data. + List localTraining = Lists.newArrayList( + new LabeledPoint(1.0, Vectors.dense(0.0, 1.1, 0.1)), + new LabeledPoint(0.0, Vectors.dense(2.0, 1.0, -1.0)), + new LabeledPoint(0.0, Vectors.dense(2.0, 1.3, 1.0)), + new LabeledPoint(1.0, Vectors.dense(0.0, 1.2, -0.5))); + DataFrame training = jsql.applySchema(jsc.parallelize(localTraining), LabeledPoint.class); + + // Create a LogisticRegression instance. This instance is an Estimator. + MyJavaLogisticRegression lr = new MyJavaLogisticRegression(); + // Print out the parameters, documentation, and any default values. + System.out.println("MyJavaLogisticRegression parameters:\n" + lr.explainParams() + "\n"); + + // We may set parameters using setter methods. + lr.setMaxIter(10); + + // Learn a LogisticRegression model. This uses the parameters stored in lr. + MyJavaLogisticRegressionModel model = lr.fit(training); + + // Prepare test data. + List localTest = Lists.newArrayList( + new LabeledPoint(1.0, Vectors.dense(-1.0, 1.5, 1.3)), + new LabeledPoint(0.0, Vectors.dense(3.0, 2.0, -0.1)), + new LabeledPoint(1.0, Vectors.dense(0.0, 2.2, -1.5))); + DataFrame test = jsql.applySchema(jsc.parallelize(localTest), LabeledPoint.class); + + // Make predictions on test documents. cvModel uses the best model found (lrModel). + DataFrame results = model.transform(test); + double sumPredictions = 0; + for (Row r : results.select("features", "label", "prediction").collect()) { + sumPredictions += r.getDouble(2); + } + if (sumPredictions != 0.0) { + throw new Exception("MyJavaLogisticRegression predicted something other than 0," + + " even though all weights are 0!"); + } + + jsc.stop(); + } +} + +/** + * Example of defining a type of {@link Classifier}. + * + * NOTE: This is private since it is an example. In practice, you may not want it to be private. + */ +class MyJavaLogisticRegression + extends Classifier + implements Params { + + /** + * Param for max number of iterations + *

+ * NOTE: The usual way to add a parameter to a model or algorithm is to include: + * - val myParamName: ParamType + * - def getMyParamName + * - def setMyParamName + */ + IntParam maxIter = new IntParam(this, "maxIter", "max number of iterations"); + + int getMaxIter() { return (int)get(maxIter); } + + public MyJavaLogisticRegression() { + setMaxIter(100); + } + + // The parameter setter is in this class since it should return type MyJavaLogisticRegression. + MyJavaLogisticRegression setMaxIter(int value) { + return (MyJavaLogisticRegression)set(maxIter, value); + } + + // This method is used by fit(). + // In Java, we have to make it public since Java does not understand Scala's protected modifier. + public MyJavaLogisticRegressionModel train(DataFrame dataset, ParamMap paramMap) { + // Extract columns from data using helper method. + JavaRDD oldDataset = extractLabeledPoints(dataset, paramMap).toJavaRDD(); + + // Do learning to estimate the weight vector. + int numFeatures = oldDataset.take(1).get(0).features().size(); + Vector weights = Vectors.zeros(numFeatures); // Learning would happen here. + + // Create a model, and return it. + return new MyJavaLogisticRegressionModel(this, paramMap, weights); + } +} + +/** + * Example of defining a type of {@link ClassificationModel}. + * + * NOTE: This is private since it is an example. In practice, you may not want it to be private. + */ +class MyJavaLogisticRegressionModel + extends ClassificationModel implements Params { + + private MyJavaLogisticRegression parent_; + public MyJavaLogisticRegression parent() { return parent_; } + + private ParamMap fittingParamMap_; + public ParamMap fittingParamMap() { return fittingParamMap_; } + + private Vector weights_; + public Vector weights() { return weights_; } + + public MyJavaLogisticRegressionModel( + MyJavaLogisticRegression parent_, + ParamMap fittingParamMap_, + Vector weights_) { + this.parent_ = parent_; + this.fittingParamMap_ = fittingParamMap_; + this.weights_ = weights_; + } + + // This uses the default implementation of transform(), which reads column "features" and outputs + // columns "prediction" and "rawPrediction." + + // This uses the default implementation of predict(), which chooses the label corresponding to + // the maximum value returned by [[predictRaw()]]. + + /** + * Raw prediction for each possible label. + * The meaning of a "raw" prediction may vary between algorithms, but it intuitively gives + * a measure of confidence in each possible label (where larger = more confident). + * This internal method is used to implement [[transform()]] and output [[rawPredictionCol]]. + * + * @return vector where element i is the raw prediction for label i. + * This raw prediction may be any real number, where a larger value indicates greater + * confidence for that label. + * + * In Java, we have to make this method public since Java does not understand Scala's protected + * modifier. + */ + public Vector predictRaw(Vector features) { + double margin = BLAS.dot(features, weights_); + // There are 2 classes (binary classification), so we return a length-2 vector, + // where index i corresponds to class i (i = 0, 1). + return Vectors.dense(-margin, margin); + } + + /** + * Number of classes the label can take. 2 indicates binary classification. + */ + public int numClasses() { return 2; } + + /** + * Create a copy of the model. + * The copy is shallow, except for the embedded paramMap, which gets a deep copy. + *

+ * This is used for the defaul implementation of [[transform()]]. + * + * In Java, we have to make this method public since Java does not understand Scala's protected + * modifier. + */ + public MyJavaLogisticRegressionModel copy() { + MyJavaLogisticRegressionModel m = + new MyJavaLogisticRegressionModel(parent_, fittingParamMap_, weights_); + Params$.MODULE$.inheritValues(this.paramMap(), this, m); + return m; + } +} diff --git a/examples/src/main/java/org/apache/spark/examples/ml/JavaSimpleParamsExample.java b/examples/src/main/java/org/apache/spark/examples/ml/JavaSimpleParamsExample.java index 98677d0a4a67b..cc69e6315fdda 100644 --- a/examples/src/main/java/org/apache/spark/examples/ml/JavaSimpleParamsExample.java +++ b/examples/src/main/java/org/apache/spark/examples/ml/JavaSimpleParamsExample.java @@ -107,5 +107,7 @@ public static void main(String[] args) { System.out.println("(" + r.get(0) + ", " + r.get(1) + ") -> prob=" + r.get(2) + ", prediction=" + r.get(3)); } + + jsc.stop(); } } diff --git a/examples/src/main/java/org/apache/spark/examples/ml/JavaSimpleTextClassificationPipeline.java b/examples/src/main/java/org/apache/spark/examples/ml/JavaSimpleTextClassificationPipeline.java index f27550e7337dd..d929f1ad2014a 100644 --- a/examples/src/main/java/org/apache/spark/examples/ml/JavaSimpleTextClassificationPipeline.java +++ b/examples/src/main/java/org/apache/spark/examples/ml/JavaSimpleTextClassificationPipeline.java @@ -88,5 +88,7 @@ public static void main(String[] args) { System.out.println("(" + r.get(0) + ", " + r.get(1) + ") --> prob=" + r.get(2) + ", prediction=" + r.get(3)); } + + jsc.stop(); } } diff --git a/mllib/src/main/scala/org/apache/spark/ml/classification/Classifier.scala b/mllib/src/main/scala/org/apache/spark/ml/classification/Classifier.scala index a4fbf04e03112..579b96a83c938 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/classification/Classifier.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/classification/Classifier.scala @@ -29,9 +29,11 @@ import org.apache.spark.sql.types.{DataType, DoubleType, StructType} /** * :: DeveloperApi :: * Params for classification. + * + * NOTE: This is currently private[spark] but will be made public later once it is stabilized. */ @DeveloperApi -trait ClassifierParams extends PredictorParams +private[spark] trait ClassifierParams extends PredictorParams with HasRawPredictionCol { override protected def validateAndTransformSchema( @@ -53,9 +55,11 @@ trait ClassifierParams extends PredictorParams * @tparam FeaturesType Type of input features. E.g., [[Vector]] * @tparam Learner Concrete Estimator type * @tparam M Concrete Model type + * + * NOTE: This is currently private[spark] but will be made public later once it is stabilized. */ @AlphaComponent -abstract class Classifier[ +private[spark] abstract class Classifier[ FeaturesType, Learner <: Classifier[FeaturesType, Learner, M], M <: ClassificationModel[FeaturesType, M]] @@ -75,8 +79,11 @@ abstract class Classifier[ * * @tparam FeaturesType Type of input features. E.g., [[Vector]] * @tparam M Concrete Model type + * + * NOTE: This is currently private[spark] but will be made public later once it is stabilized. */ @AlphaComponent +private[spark] abstract class ClassificationModel[FeaturesType, M <: ClassificationModel[FeaturesType, M]] extends PredictionModel[FeaturesType, M] with ClassifierParams { @@ -161,7 +168,7 @@ private[ml] object ClassificationModel { * should already be done. * @return (number of columns added, transformed dataset) */ - private[ml] def transformColumnsImpl[FeaturesType]( + def transformColumnsImpl[FeaturesType]( dataset: DataFrame, model: ClassificationModel[FeaturesType, _], map: ParamMap): (Int, DataFrame) = { diff --git a/mllib/src/main/scala/org/apache/spark/ml/classification/LogisticRegression.scala b/mllib/src/main/scala/org/apache/spark/ml/classification/LogisticRegression.scala index 3246c9beae241..c146fe244c66e 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/classification/LogisticRegression.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/classification/LogisticRegression.scala @@ -20,8 +20,10 @@ package org.apache.spark.ml.classification import org.apache.spark.annotation.AlphaComponent import org.apache.spark.ml.param._ import org.apache.spark.mllib.classification.LogisticRegressionWithLBFGS -import org.apache.spark.mllib.linalg.{BLAS, Vector, Vectors} +import org.apache.spark.mllib.linalg.{VectorUDT, BLAS, Vector, Vectors} import org.apache.spark.sql.DataFrame +import org.apache.spark.sql.Dsl._ +import org.apache.spark.sql.types.DoubleType import org.apache.spark.storage.StorageLevel @@ -102,6 +104,74 @@ class LogisticRegressionModel private[ml] ( 1.0 / (1.0 + math.exp(-m)) } + override def transform(dataset: DataFrame, paramMap: ParamMap): DataFrame = { + // This is overridden (a) to be more efficient (avoiding re-computing values when creating + // multiple output columns) and (b) to handle threshold, which the abstractions do not use. + // TODO: We should abstract away the steps defined by UDFs below so that the abstractions + // can call whichever UDFs are needed to create the output columns. + + // Check schema + transformSchema(dataset.schema, paramMap, logging = true) + + val map = this.paramMap ++ paramMap + + // Output selected columns only. + // This is a bit complicated since it tries to avoid repeated computation. + // rawPrediction (-margin, margin) + // probability (1.0-score, score) + // prediction (max margin) + var tmpData = dataset + var numColsOutput = 0 + if (map(rawPredictionCol) != "") { + val features2raw: Vector => Vector = (features) => predictRaw(features) + tmpData = tmpData.select($"*", + callUDF(features2raw, new VectorUDT, col(map(featuresCol))).as(map(rawPredictionCol))) + numColsOutput += 1 + } + if (map(probabilityCol) != "") { + if (map(rawPredictionCol) != "") { + val raw2prob: Vector => Vector = { (rawPreds: Vector) => + val prob1 = 1.0 / (1.0 + math.exp(-rawPreds(1))) + Vectors.dense(1.0 - prob1, prob1) + } + tmpData = tmpData.select($"*", + callUDF(raw2prob, new VectorUDT, col(map(rawPredictionCol))).as(map(probabilityCol))) + } else { + val features2prob: Vector => Vector = (features: Vector) => predictProbabilities(features) + tmpData = tmpData.select($"*", + callUDF(features2prob, new VectorUDT, col(map(featuresCol))).as(map(probabilityCol))) + } + numColsOutput += 1 + } + if (map(predictionCol) != "") { + val t = map(threshold) + if (map(probabilityCol) != "") { + val predict: Vector => Double = { probs: Vector => + if (probs(1) > t) 1.0 else 0.0 + } + tmpData = tmpData.select($"*", + callUDF(predict, DoubleType, col(map(probabilityCol))).as(map(predictionCol))) + } else if (map(rawPredictionCol) != "") { + val predict: Vector => Double = { rawPreds: Vector => + val prob1 = 1.0 / (1.0 + math.exp(-rawPreds(1))) + if (prob1 > t) 1.0 else 0.0 + } + tmpData = tmpData.select($"*", + callUDF(predict, DoubleType, col(map(rawPredictionCol))).as(map(predictionCol))) + } else { + val predict: Vector => Double = (features: Vector) => this.predict(features) + tmpData = tmpData.select($"*", + callUDF(predict, DoubleType, col(map(featuresCol))).as(map(predictionCol))) + } + numColsOutput += 1 + } + if (numColsOutput == 0) { + this.logWarning(s"$uid: LogisticRegressionModel.transform() was called as NOOP" + + " since no output columns were set.") + } + tmpData + } + override val numClasses: Int = 2 /** @@ -109,6 +179,7 @@ class LogisticRegressionModel private[ml] ( * The behavior of this can be adjusted using [[threshold]]. */ override protected def predict(features: Vector): Double = { + println(s"LR.predict with threshold: ${paramMap(threshold)}") if (score(features) > paramMap(threshold)) 1 else 0 } diff --git a/mllib/src/main/scala/org/apache/spark/ml/classification/ProbabilisticClassifier.scala b/mllib/src/main/scala/org/apache/spark/ml/classification/ProbabilisticClassifier.scala index f7b8afdc9d380..fd41d077f7cad 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/classification/ProbabilisticClassifier.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/classification/ProbabilisticClassifier.scala @@ -51,9 +51,11 @@ private[classification] trait ProbabilisticClassifierParams * @tparam FeaturesType Type of input features. E.g., [[Vector]] * @tparam Learner Concrete Estimator type * @tparam M Concrete Model type + * + * NOTE: This is currently private[spark] but will be made public later once it is stabilized. */ @AlphaComponent -abstract class ProbabilisticClassifier[ +private[spark] abstract class ProbabilisticClassifier[ FeaturesType, Learner <: ProbabilisticClassifier[FeaturesType, Learner, M], M <: ProbabilisticClassificationModel[FeaturesType, M]] @@ -71,9 +73,11 @@ abstract class ProbabilisticClassifier[ * * @tparam FeaturesType Type of input features. E.g., [[Vector]] * @tparam M Concrete Model type + * + * NOTE: This is currently private[spark] but will be made public later once it is stabilized. */ @AlphaComponent -abstract class ProbabilisticClassificationModel[ +private[spark] abstract class ProbabilisticClassificationModel[ FeaturesType, M <: ProbabilisticClassificationModel[FeaturesType, M]] extends ClassificationModel[FeaturesType, M] with ProbabilisticClassifierParams { diff --git a/mllib/src/main/scala/org/apache/spark/ml/impl/estimator/Predictor.scala b/mllib/src/main/scala/org/apache/spark/ml/impl/estimator/Predictor.scala index 59a4e44b13fda..d3875b733b4c9 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/impl/estimator/Predictor.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/impl/estimator/Predictor.scala @@ -32,9 +32,11 @@ import org.apache.spark.sql.types.{DataType, DoubleType, StructType} * :: DeveloperApi :: * * Trait for parameters for prediction (regression and classification). + * + * NOTE: This is currently private[spark] but will be made public later once it is stabilized. */ @DeveloperApi -trait PredictorParams extends Params +private[spark] trait PredictorParams extends Params with HasLabelCol with HasFeaturesCol with HasPredictionCol { /** @@ -73,6 +75,8 @@ trait PredictorParams extends Params * parameter to specify the concrete type. * @tparam M Specialization of [[PredictionModel]]. If you subclass this type, use this type * parameter to specify the concrete type for the corresponding model. + * + * NOTE: This is currently private[spark] but will be made public later once it is stabilized. */ @AlphaComponent abstract class Predictor[ @@ -149,9 +153,11 @@ abstract class Predictor[ * E.g., [[org.apache.spark.mllib.linalg.VectorUDT]] for vector features. * @tparam M Specialization of [[PredictionModel]]. If you subclass this type, use this type * parameter to specify the concrete type for the corresponding model. + * + * NOTE: This is currently private[spark] but will be made public later once it is stabilized. */ @AlphaComponent -abstract class PredictionModel[FeaturesType, M <: PredictionModel[FeaturesType, M]] +private[spark] abstract class PredictionModel[FeaturesType, M <: PredictionModel[FeaturesType, M]] extends Model[M] with PredictorParams { def setFeaturesCol(value: String): M = set(featuresCol, value).asInstanceOf[M] diff --git a/mllib/src/main/scala/org/apache/spark/ml/param/params.scala b/mllib/src/main/scala/org/apache/spark/ml/param/params.scala index c4f98a7222d06..ae3481ef2346d 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/param/params.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/param/params.scala @@ -67,37 +67,47 @@ class Param[T] ( // specialize primitive-typed params because Java doesn't recognize scala.Double, scala.Int, ... /** Specialized version of [[Param[Double]]] for Java. */ -class DoubleParam(parent: Params, name: String, doc: String, defaultValue: Option[Double] = None) +class DoubleParam(parent: Params, name: String, doc: String, defaultValue: Option[Double]) extends Param[Double](parent, name, doc, defaultValue) { + def this(parent: Params, name: String, doc: String) = this(parent, name, doc, None) + override def w(value: Double): ParamPair[Double] = super.w(value) } /** Specialized version of [[Param[Int]]] for Java. */ -class IntParam(parent: Params, name: String, doc: String, defaultValue: Option[Int] = None) +class IntParam(parent: Params, name: String, doc: String, defaultValue: Option[Int]) extends Param[Int](parent, name, doc, defaultValue) { + def this(parent: Params, name: String, doc: String) = this(parent, name, doc, None) + override def w(value: Int): ParamPair[Int] = super.w(value) } /** Specialized version of [[Param[Float]]] for Java. */ -class FloatParam(parent: Params, name: String, doc: String, defaultValue: Option[Float] = None) +class FloatParam(parent: Params, name: String, doc: String, defaultValue: Option[Float]) extends Param[Float](parent, name, doc, defaultValue) { + def this(parent: Params, name: String, doc: String) = this(parent, name, doc, None) + override def w(value: Float): ParamPair[Float] = super.w(value) } /** Specialized version of [[Param[Long]]] for Java. */ -class LongParam(parent: Params, name: String, doc: String, defaultValue: Option[Long] = None) +class LongParam(parent: Params, name: String, doc: String, defaultValue: Option[Long]) extends Param[Long](parent, name, doc, defaultValue) { + def this(parent: Params, name: String, doc: String) = this(parent, name, doc, None) + override def w(value: Long): ParamPair[Long] = super.w(value) } /** Specialized version of [[Param[Boolean]]] for Java. */ -class BooleanParam(parent: Params, name: String, doc: String, defaultValue: Option[Boolean] = None) +class BooleanParam(parent: Params, name: String, doc: String, defaultValue: Option[Boolean]) extends Param[Boolean](parent, name, doc, defaultValue) { + def this(parent: Params, name: String, doc: String) = this(parent, name, doc, None) + override def w(value: Boolean): ParamPair[Boolean] = super.w(value) } diff --git a/mllib/src/main/scala/org/apache/spark/ml/regression/Regressor.scala b/mllib/src/main/scala/org/apache/spark/ml/regression/Regressor.scala index dca849f44270f..d679085eeafe1 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/regression/Regressor.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/regression/Regressor.scala @@ -24,9 +24,11 @@ import org.apache.spark.ml.impl.estimator.{PredictionModel, Predictor, Predictor * :: DeveloperApi :: * Params for regression. * Currently empty, but may add functionality later. + * + * NOTE: This is currently private[spark] but will be made public later once it is stabilized. */ @DeveloperApi -trait RegressorParams extends PredictorParams +private[spark] trait RegressorParams extends PredictorParams /** * :: AlphaComponent :: @@ -36,9 +38,11 @@ trait RegressorParams extends PredictorParams * @tparam FeaturesType Type of input features. E.g., [[org.apache.spark.mllib.linalg.Vector]] * @tparam Learner Concrete Estimator type * @tparam M Concrete Model type + * + * NOTE: This is currently private[spark] but will be made public later once it is stabilized. */ @AlphaComponent -abstract class Regressor[ +private[spark] abstract class Regressor[ FeaturesType, Learner <: Regressor[FeaturesType, Learner, M], M <: RegressionModel[FeaturesType, M]] @@ -55,9 +59,11 @@ abstract class Regressor[ * * @tparam FeaturesType Type of input features. E.g., [[org.apache.spark.mllib.linalg.Vector]] * @tparam M Concrete Model type. + * + * NOTE: This is currently private[spark] but will be made public later once it is stabilized. */ @AlphaComponent -abstract class RegressionModel[FeaturesType, M <: RegressionModel[FeaturesType, M]] +private[spark] abstract class RegressionModel[FeaturesType, M <: RegressionModel[FeaturesType, M]] extends PredictionModel[FeaturesType, M] with RegressorParams { /**