-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathcombine_models.py
245 lines (199 loc) · 8.61 KB
/
combine_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import torch
import torch.nn as nn
import torch.utils.data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import re
import os
import time
from preprocess import mean, std
from settings import joint_optimizer_lrs, joint_lr_step_size
class PPNet_ensemble(nn.Module):
def __init__(self, ppnets):
super(PPNet_ensemble, self).__init__()
self.ppnets = ppnets # a list of ppnets
def forward(self, x):
logits, min_distances_0 = self.ppnets[0](x)
min_distances = [min_distances_0]
for i in range(1, len(self.ppnets)):
logits_i, min_distances_i = self.ppnets[i](x)
logits.add_(logits_i)
min_distances.append(min_distances_i)
return logits, min_distances
# only supports last layer adjustment
def _train_or_test_ppnet_ensemble(model, dataloader, optimizer=None, class_specific=True, use_l1_mask=True,
coefs=None, log=print):
'''
model: the multi-gpu model
dataloader:
optimizer: if None, will be test evaluation
'''
is_train = optimizer is not None
start = time.time()
n_examples = 0
n_correct = 0
n_batches = 0
total_cross_entropy = 0
for i, (image, label) in enumerate(dataloader):
input = image.cuda()
target = label.cuda()
# torch.enable_grad() has no effect outside of no_grad()
grad_req = torch.enable_grad() if is_train else torch.no_grad()
with grad_req:
# nn.Module has implemented __call__() function
# so no need to call .forward
output, _ = model(input)
# compute loss
cross_entropy = torch.nn.functional.cross_entropy(output, target)
l1 = torch.tensor(0.0).cuda()
if class_specific:
if use_l1_mask:
for ppnet in model.module.ppnets:
l1_mask = 1 - torch.t(ppnet.prototype_class_identity).cuda()
l1_ = (ppnet.last_layer.weight * l1_mask).norm(p=1)
l1.add_(l1_)
else:
for ppnet in model.module.ppnets:
l1_ = ppnet.last_layer.weight.norm(p=1)
l1.add_(l1_)
else:
for ppnet in model.module.ppnets:
l1_ = ppnet.last_layer.weight.norm(p=1)
l1.add_(l1_)
# evaluation statistics
_, predicted = torch.max(output.data, 1)
n_examples += target.size(0)
n_correct += (predicted == target).sum().item()
n_batches += 1
total_cross_entropy += cross_entropy.item()
# compute gradient and do SGD step
if is_train:
if class_specific:
if coefs is not None:
loss = (coefs['crs_ent'] * cross_entropy
+ coefs['l1'] * l1)
else:
loss = cross_entropy + 1e-4 * l1
else:
if coefs is not None:
loss = (coefs['crs_ent'] * cross_entropy
+ coefs['l1'] * l1)
else:
loss = cross_entropy + 1e-4 * l1
optimizer.zero_grad()
loss.backward()
optimizer.step()
del input, target, output, predicted
end = time.time()
log('\ttime: \t{0}'.format(end - start))
log('\tcross ent: \t{0}'.format(total_cross_entropy / n_batches))
log('\taccu: \t\t{0}%'.format(n_correct / n_examples * 100))
last_layer_p1_norm = 0
for ppnet in model.module.ppnets:
last_layer_p1_norm += ppnet.last_layer.weight.norm(p=1).item()
log('\tl1: \t\t{0}'.format(last_layer_p1_norm))
return n_correct / n_examples
def train_ensemble(model, dataloader, optimizer, class_specific=True, coefs=None, log=print):
assert(optimizer is not None)
log('\ttrain')
model.train()
return _train_or_test_ppnet_ensemble(model=model, dataloader=dataloader, optimizer=optimizer,
class_specific=class_specific, coefs=coefs, log=log)
def test_ensemble(model, dataloader, class_specific=True, log=print):
log('\ttest')
model.eval()
return _train_or_test_ppnet_ensemble(model=model, dataloader=dataloader, optimizer=None,
class_specific=class_specific, log=log)
def ensemble_last_only(model, log=print):
for ppnet in model.module.ppnets:
for p in ppnet.features.parameters():
p.requires_grad = False
for p in ppnet.add_on_layers.parameters():
p.requires_grad = False
ppnet.prototype_vectors.requires_grad = False
for p in ppnet.last_layer.parameters():
p.requires_grad = True
log('\tensemble last layer')
##### MODEL AND DATA LOADING
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
# load the models
# provide paths to saved models you want to combine:
# e.g. load_model_paths = ['./saved_models/densenet121/003/30_18push0.8043.pth',
# './saved_models/resnet34/002/30_19push0.7920.pth',
# './saved_models/vgg19/003/30_18push0.7822.pth']
load_model_paths = ['./saved_models/densenet121/003/30_18push0.7901.pth',
'./saved_models/resnet50/002/30_19push0.8640.pth',
'./saved_models/vgg19/003/30_18push0.7600.pth']
load_model_paths = list(load_model_paths)
ppnets = []
epoch_number_strs = []
start_epoch_numbers = []
for load_model_path in load_model_paths:
load_model_name = load_model_path.split('/')[-1]
epoch_number_str = re.search(r'\d+', load_model_name).group(0)
epoch_number_strs.append(epoch_number_str)
start_epoch_number = int(epoch_number_str)
start_epoch_numbers.append(start_epoch_number)
print('load model from ' + load_model_path)
ppnet = torch.load(load_model_path)
ppnet = ppnet.cuda()
ppnets.append(ppnet)
ppnet_ensemble = PPNet_ensemble(ppnets)
ppnet_ensemble = ppnet_ensemble.cuda()
ppnet_ensemble_multi = torch.nn.DataParallel(ppnet_ensemble)
img_size = ppnets[0].img_size
# load the (test) data
from settings import test_dir
test_batch_size = 100
normalize = transforms.Normalize(mean=mean,
std=std)
train_dir = './datasets/cub200_cropped/train_cropped/'
train_dataset = datasets.ImageFolder(
train_dir,
transforms.Compose([
transforms.RandomAffine(degrees=(-25, 25), shear=15),
transforms.RandomHorizontalFlip(),
transforms.Resize(size=(img_size, img_size)),
transforms.ToTensor(),
normalize,
]))
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=80, shuffle=True,
num_workers=4, pin_memory=False)
test_dataset = datasets.ImageFolder(
test_dir,
transforms.Compose([
transforms.Resize(size=(img_size, img_size)),
transforms.ToTensor(),
normalize,
]))
test_loader = torch.utils.data.DataLoader(
test_dataset, batch_size=test_batch_size, shuffle=True,
num_workers=4, pin_memory=False)
print('test set size: {0}'.format(len(test_loader.dataset)))
for ppnet in ppnet_ensemble_multi.module.ppnets:
print(ppnet)
class_specific = True
optimizer_specs = []
for ppnet in ppnet_ensemble_multi.module.ppnets:
optimizer_specs = optimizer_specs + [{'params': ppnet.features.parameters(), 'lr': joint_optimizer_lrs['features'], 'weight_decay': 1e-3}, # bias are now also being regularized
{'params': ppnet.add_on_layers.parameters(), 'lr': joint_optimizer_lrs['add_on_layers'], 'weight_decay': 1e-3},
{'params': ppnet.prototype_vectors, 'lr': 0},
{'params': ppnet.conv_offset.parameters(), 'lr': joint_optimizer_lrs['conv_offset']},
{'params': ppnet.last_layer.parameters(), 'lr': 1e-4}
]
optimizer = torch.optim.Adam(optimizer_specs)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=joint_lr_step_size, gamma=0.1)
#check test accuracy
accu = test_ensemble(model=ppnet_ensemble_multi, dataloader=test_loader,
class_specific=class_specific, log=print)
for i in range(0):
print("Epoch {}".format(i))
ensemble_last_only(model=ppnet_ensemble_multi, log=print)
train_ensemble(model=ppnet_ensemble_multi, dataloader=train_loader, optimizer=optimizer,
class_specific=class_specific, log=print)
#check test accuracy
accu = test_ensemble(model=ppnet_ensemble_multi, dataloader=test_loader,
class_specific=class_specific, log=print)
if (i + 1) % 10 == 0:
lr_scheduler.step()