forked from BradnerLab/pipeline
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
executable file
·1137 lines (924 loc) · 42.5 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/python
#SET OF GENERAL UTILITY FUNCTIONS FOR SEQ DATA
#last modified 131031
#please edit this to the location of the samtools program
samtoolsString ='samtools'
'''
The MIT License (MIT)
Copyright (c) 2013 Charles Lin
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
'''
#Locus, LocusCollection, and Gene classes were generously provided by Graham Ruby
#Additional functions are found from online sources and are noted in the comments
#==================================================================
#===========================DEPENDENCIES===========================
#==================================================================
import os
import gzip
import re
from string import *
import subprocess
import datetime
from collections import defaultdict
#==================================================================
#======================TABLE OF CONTENTS===========================
#==================================================================
#1. Input/Output and file handling functions
#def open(file,mode='r'): <- replaces open with a version that can handle gzipped files
#def parseTable(fn, sep, header = False,excel = False): <- opens standard delimited files
#def unParseTable(table, output, sep): <- writes standard delimited files, opposite of parseTable
#def gffToBed(gff,output= ''): <- converts standard UCSC gff format files to UCSC bed format files
#def formatFolder(folderName,create=False): <- checks for the presence of any folder and makes it if create =True
#2. Gene annotation functions
#def makeStartDict(annotFile,geneList = []): <- takes a standard UCSC refseq table and creates a dictionary keyed by refseq ID with info about each transcript
#def getTSSs(geneList,refseqTable,refseqDict): <- returns the TSS location of any gene
#def importRefseq(refseqFile, returnMultiples = False): <- imports a standard UCSC refseq annotation file into a dictionary
#def makeGenes(annotFile,geneList=[],asDict = False): <- takes a UCSC refseq annotation file and a gene list and makes a list or dictionary of Gene class objects
#def makeTranscriptCollection(annotFile,upSearch,downSearch,window = 500,geneList = []): <- takes a UCSC refseq annotation file and makes a LocusCollection where each locus is a full transcript
#def importBoundRegion(boundRegionFile,name): <- imports a bound region file (a standard bed or macs output bed)
#3. Locus class
#class Locus(chr,start,end,sense,ID) <- standard locus class for tracking genomic loci
#class LocusCollection(lociList,windowSize=500) <- a collection of locus objects used for querying large sets of loci
#4. Gene class
#class Gene(name,chr,sense,txCoords,cdCoords,exStarts,exEnds,commonName=''): <- gene class object that contains all annotation information about a given transcript
#5. Locus functions
#def locusCollectionToGFF(locusCollection): <- turns a locus collection into a gff
#def gffToLocusCollection(gff,window =500): <- turns a gff into a locus collection (reverse of gff)
#def makeTSSLocus(gene,startDict,upstream,downstream): <- from a start dict makes a locus surrounding the tss
#def makeSearchLocus(locus,upSearch,downSearch): <- takes an existing locus and makes a larger flanking locus
#6. Bam class
#class Bam(bamFile) <- a class for handling and manipulating bam objects. requires samtools
#7. Misc. functions
#def uniquify(seq, idfun=None): <- makes a list unique
#def order(x, NoneIsLast = True, decreasing = False): <- returns the ascending or descending order of a list
#8 Sequence functions
#def fetchSeq(directory,chrom,start,end,UCSC=False,lineBreaks=True,header = True): <- grabs sequence from a region
#def gffToFasta(species,directory,gff,UCSC = True): <- converts a gff to a fasta
#==================================================================
#==========================I/O FUNCTIONS===========================
#==================================================================
bopen=open
def open(file,mode='r'):
if file[-3:]=='.gz':
return gzip.open(file,mode+'b')
else:
return bopen(file,mode)
#parseTable 4/14/08
#takes in a table where columns are separated by a given symbol and outputs
#a nested list such that list[row][col]
#example call:
#table = parseTable('file.txt','\t')
def parseTable(fn, sep, header = False,excel = False):
fh = open(fn)
lines = fh.readlines()
fh.close()
if excel:
lines = lines[0].split('\r')
if lines[0].count('\r') > 0:
lines = lines[0].split('\r')
table = []
if header == True:
lines =lines[1:]
for i in lines:
table.append(i[:-1].split(sep))
return table
#unParseTable 4/14/08
#takes in a table generated by parseTable and writes it to an output file
#takes as parameters (table, output, sep), where sep is how the file is delimited
#example call unParseTable(table, 'table.txt', '\t') for a tab del file
def unParseTable(table, output, sep):
fh_out = open(output,'w')
if len(sep) == 0:
for i in table:
fh_out.write(str(i))
fh_out.write('\n')
else:
for line in table:
line = [str(x) for x in line]
line = join(line,sep)
fh_out.write(line)
fh_out.write('\n')
fh_out.close()
#100912
#gffToBed
def gffToBed(gff,output= ''):
'''
turns a gff to a bed file
'''
bed = []
for line in gff:
newLine = [line[0],line[3],line[4],line[1],0,line[6]]
bed.append(newLine)
if len(output) == 0:
return bed
else:
unParseTable(bed,output,'\t')
def formatFolder(folderName,create=False):
'''
makes sure a folder exists and if not makes it
returns a bool for folder
'''
if folderName[-1] != '/':
folderName +='/'
try:
foo = os.listdir(folderName)
return folderName
except OSError:
print('folder %s does not exist' % (folderName))
if create:
os.system('mkdir %s' % (folderName))
return folderName
else:
return False
#==================================================================
#===================ANNOTATION FUNCTIONS===========================
#==================================================================
def makeStartDict(annotFile,geneList = []):
'''
makes a dictionary keyed by refseq ID that contains information about
chrom/start/stop/strand/common name
'''
if type(geneList) == str:
geneList = parseTable(geneList,'\t')
geneList = [line[0] for line in geneList]
if upper(annotFile).count('REFSEQ') == 1:
refseqTable,refseqDict = importRefseq(annotFile)
if len(geneList) == 0:
geneList = refseqDict.keys()
startDict = {}
for gene in geneList:
if refseqDict.has_key(gene) == False:
continue
startDict[gene]={}
startDict[gene]['sense'] = refseqTable[refseqDict[gene][0]][3]
startDict[gene]['chr'] = refseqTable[refseqDict[gene][0]][2]
startDict[gene]['start'] = getTSSs([gene],refseqTable,refseqDict)
if startDict[gene]['sense'] == '+':
startDict[gene]['end'] =[int(refseqTable[refseqDict[gene][0]][5])]
else:
startDict[gene]['end'] = [int(refseqTable[refseqDict[gene][0]][4])]
startDict[gene]['name'] = refseqTable[refseqDict[gene][0]][12]
return startDict
#generic function to get the TSS of any gene
def getTSSs(geneList,refseqTable,refseqDict):
#refseqTable,refseqDict = importRefseq(refseqFile)
if len(geneList) == 0:
refseq = refseqTable
else:
refseq = refseqFromKey(geneList,refseqDict,refseqTable)
TSS = []
for line in refseq:
if line[3] == '+':
TSS.append(line[4])
if line[3] == '-':
TSS.append(line[5])
TSS = map(int,TSS)
return TSS
#10/13/08
#importRefseq
#takes in a refseq table and makes a refseq table and a refseq dictionary for keying the table
def importRefseq(refseqFile, returnMultiples = False):
'''
opens up a refseq file downloaded by UCSC
'''
refseqTable = parseTable(refseqFile,'\t')
refseqDict = {}
ticker = 1
for line in refseqTable[1:]:
if refseqDict.has_key(line[1]):
refseqDict[line[1]].append(ticker)
else:
refseqDict[line[1]] = [ticker]
ticker = ticker + 1
multiples = []
for i in refseqDict:
if len(refseqDict[i]) > 1:
multiples.append(i)
if returnMultiples == True:
return refseqTable,refseqDict,multiples
else:
return refseqTable,refseqDict
#12/29/08
#refseqFromKey(refseqKeyList,refseqDict,refseqTable)
#function that grabs refseq lines from refseq IDs
def refseqFromKey(refseqKeyList,refseqDict,refseqTable):
typeRefseq = []
for name in refseqKeyList:
if refseqDict.has_key(name):
typeRefseq.append(refseqTable[refseqDict[name][0]])
return typeRefseq
#10/13/08
#make genes
#turns a refseq ID into a Gene object from utility module
def makeGenes(annotFile,geneList=[],asDict = False):
'''
takes in a refseq or ensembl annotation file and enters all identifiers in the geneList into a list as gene objects
'''
if asDict:
genes = {}
else:
genes = []
if type(geneList) == str:
print('importing gene list from %s' % (geneList))
geneList = parseTable(geneList,'\t')
geneList = [line[0] for line in geneList]
if upper(annotFile).count('REFSEQ') == 1:
refTable,refDict = importRefseq(annotFile)
if len(geneList) == 0:
geneList = refDict.keys()
for refseqID in geneList:
if refDict.has_key(refseqID):
geneIndex = refDict[refseqID][0]
else:
#print('no such gene ' + str(refseqID))
continue
geneLine = refTable[int(geneIndex)]
exonStarts = map(int,geneLine[9].split(',')[:-1])
exonEnds = map(int,geneLine[10].split(',')[:-1])
gene = Gene(refseqID,geneLine[2],geneLine[3],[int(geneLine[4]),int(geneLine[5])],[int(geneLine[6]),int(geneLine[7])],exonStarts,exonEnds,geneLine[12])
if asDict:
genes[refseqID] = gene
else:
genes.append(gene)
return genes
#04/07/09
#makes a LocusCollection w/ each transcript as a locus
#bob = makeTranscriptCollection('/Users/chazlin/genomes/mm8/mm8refseq.txt')
def makeTranscriptCollection(annotFile,upSearch,downSearch,window = 500,geneList = []):
'''
makes a LocusCollection w/ each transcript as a locus
takes in either a refseqfile or an ensemblGFF
'''
if upper(annotFile).count('REFSEQ') == 1:
refseqTable,refseqDict = importRefseq(annotFile)
locusList = []
ticker = 0
if len(geneList) == 0:
geneList =refseqDict.keys()
for line in refseqTable[1:]:
if geneList.count(line[1]) > 0:
if line[3] == '-':
locus = Locus(line[2],int(line[4])-downSearch,int(line[5])+upSearch,line[3],line[1])
else:
locus = Locus(line[2],int(line[4])-upSearch,int(line[5])+downSearch,line[3],line[1])
locusList.append(locus)
ticker = ticker + 1
if ticker%1000 == 0:
print(ticker)
transCollection = LocusCollection(locusList,window)
return transCollection
#06/11/09
#import bound region
#imports a bound region file and turns it into a locus collection
#bound region files are output by my pipeline as Name_boundFile.txt files
def importBoundRegion(boundRegionFile,name):
'''
imports bound regions in either bed format or in error model format
'''
bound = parseTable(boundRegionFile,'\t')
lociList = []
ticker = 1
#
if boundRegionFile.split('.')[-1] == 'bed':
bed = True
else:
bed = False
if bed:
for line in bound:
if ticker%1000 == 0:
print(ticker)
lociList.append(Locus(line[0],int(line[1]),int(line[2]),'.',ID = name + '_' + str(ticker)))
ticker = ticker + 1
else:
for line in bound:
if ticker%1000 == 0:
print(ticker)
lociList.append(Locus('chr'+line[0],int(line[1]),int(line[2]),'.',ID = name + '_' + str(ticker)))
ticker = ticker + 1
return LocusCollection(lociList,500)
#==================================================================
#========================LOCUS INSTANCE============================
#==================================================================
#Locus and LocusCollection instances courtesy of Graham Ruby
class Locus:
# this may save some space by reducing the number of chromosome strings
# that are associated with Locus instances (see __init__).
__chrDict = dict()
__senseDict = {'+':'+', '-':'-', '.':'.'}
# chr = chromosome name (string)
# sense = '+' or '-' (or '.' for an ambidexterous locus)
# start,end = ints of the start and end coords of the locus;
# end coord is the coord of the last nucleotide.
def __init__(self,chr,start,end,sense,ID=''):
coords = [start,end]
coords.sort()
# this method for assigning chromosome should help avoid storage of
# redundant strings.
if not(self.__chrDict.has_key(chr)): self.__chrDict[chr] = chr
self._chr = self.__chrDict[chr]
self._sense = self.__senseDict[sense]
self._start = int(coords[0])
self._end = int(coords[1])
self._ID = ID
def ID(self): return self._ID
def chr(self): return self._chr
def start(self): return self._start ## returns the smallest coordinate
def end(self): return self._end ## returns the biggest coordinate
def len(self): return self._end - self._start + 1
def getAntisenseLocus(self):
if self._sense=='.': return self
else:
switch = {'+':'-', '-':'+'}
return Locus(self._chr,self._start,self._end,switch[self._sense])
def coords(self): return [self._start,self._end] ## returns a sorted list of the coordinates
def sense(self): return self._sense
# returns boolean; True if two loci share any coordinates in common
def overlaps(self,otherLocus):
if self.chr()!=otherLocus.chr(): return False
elif not(self._sense=='.' or \
otherLocus.sense()=='.' or \
self.sense()==otherLocus.sense()): return False
elif self.start() > otherLocus.end() or otherLocus.start() > self.end(): return False
else: return True
# returns boolean; True if all the nucleotides of the given locus overlap
# with the self locus
def contains(self,otherLocus):
if self.chr()!=otherLocus.chr(): return False
elif not(self._sense=='.' or \
otherLocus.sense()=='.' or \
self.sense()==otherLocus.sense()): return False
elif self.start() > otherLocus.start() or otherLocus.end() > self.end(): return False
else: return True
# same as overlaps, but considers the opposite strand
def overlapsAntisense(self,otherLocus):
return self.getAntisenseLocus().overlaps(otherLocus)
# same as contains, but considers the opposite strand
def containsAntisense(self,otherLocus):
return self.getAntisenseLocus().contains(otherLocus)
def __hash__(self): return self._start + self._end
def __eq__(self,other):
if self.__class__ != other.__class__: return False
if self.chr()!=other.chr(): return False
if self.start()!=other.start(): return False
if self.end()!=other.end(): return False
if self.sense()!=other.sense(): return False
return True
def __ne__(self,other): return not(self.__eq__(other))
def __str__(self): return self.chr()+'('+self.sense()+'):'+'-'.join(map(str,self.coords()))
def plotStr(self): return self.chr() + ':' + self.sense() + ':' + '-'.join(map(str,self.coords()))
def checkRep(self):
pass
def gffLine(self): return [self.chr(),self.ID(),'',self.start(),self.end(),'',self.sense(),'',self.ID()]
class LocusCollection:
def __init__(self,loci,windowSize):
### top-level keys are chr, then strand, no space
self.__chrToCoordToLoci = dict()
self.__loci = dict()
self.__winSize = windowSize
for lcs in loci: self.__addLocus(lcs)
def __addLocus(self,lcs):
if not(self.__loci.has_key(lcs)):
self.__loci[lcs] = None
if lcs.sense()=='.': chrKeyList = [lcs.chr()+'+', lcs.chr()+'-']
else: chrKeyList = [lcs.chr()+lcs.sense()]
for chrKey in chrKeyList:
if not(self.__chrToCoordToLoci.has_key(chrKey)): self.__chrToCoordToLoci[chrKey] = dict()
for n in self.__getKeyRange(lcs):
if not(self.__chrToCoordToLoci[chrKey].has_key(n)): self.__chrToCoordToLoci[chrKey][n] = []
self.__chrToCoordToLoci[chrKey][n].append(lcs)
def __getKeyRange(self,locus):
start = locus.start() / self.__winSize
end = locus.end() / self.__winSize + 1 ## add 1 because of the range
return range(start,end)
def __len__(self): return len(self.__loci)
def append(self,new): self.__addLocus(new)
def extend(self,newList):
for lcs in newList: self.__addLocus(lcs)
def hasLocus(self,locus):
return self.__loci.has_key(locus)
def remove(self,old):
if not(self.__loci.has_key(old)): raise ValueError("requested locus isn't in collection")
del self.__loci[old]
if old.sense()=='.': senseList = ['+','-']
else: senseList = [old.sense()]
for k in self.__getKeyRange(old):
for sense in senseList:
self.__chrToCoordToLoci[old.chr()+sense][k].remove(old)
def getWindowSize(self): return self.__winSize
def getLoci(self): return self.__loci.keys()
def getChrList(self):
# i need to remove the strand info from the chromosome keys and make
# them non-redundant.
tempKeys = dict()
for k in self.__chrToCoordToLoci.keys(): tempKeys[k[:-1]] = None
return tempKeys.keys()
def __subsetHelper(self,locus,sense):
sense = sense.lower()
if ['sense','antisense','both'].count(sense)!=1:
raise ValueError("sense command invalid: '"+sense+"'.")
matches = dict()
senses = ['+','-']
if locus.sense()=='.' or sense=='both': lamb = lambda s: True
elif sense=='sense': lamb = lambda s: s==locus.sense()
elif sense=='antisense': lamb = lambda s: s!=locus.sense()
else: raise ValueError("sense value was inappropriate: '"+sense+"'.")
for s in filter(lamb, senses):
chrKey = locus.chr()+s
if self.__chrToCoordToLoci.has_key(chrKey):
for n in self.__getKeyRange(locus):
if self.__chrToCoordToLoci[chrKey].has_key(n):
for lcs in self.__chrToCoordToLoci[chrKey][n]:
matches[lcs] = None
return matches.keys()
# sense can be 'sense' (default), 'antisense', or 'both'
# returns all members of the collection that overlap the locus
def getOverlap(self,locus,sense='sense'):
matches = self.__subsetHelper(locus,sense)
### now, get rid of the ones that don't really overlap
realMatches = dict()
if sense=='sense' or sense=='both':
for i in filter(lambda lcs: lcs.overlaps(locus), matches):
realMatches[i] = None
if sense=='antisense' or sense=='both':
for i in filter(lambda lcs: lcs.overlapsAntisense(locus), matches):
realMatches[i] = None
return realMatches.keys()
# sense can be 'sense' (default), 'antisense', or 'both'
# returns all members of the collection that are contained by the locus
def getContained(self,locus,sense='sense'):
matches = self.__subsetHelper(locus,sense)
### now, get rid of the ones that don't really overlap
realMatches = dict()
if sense=='sense' or sense=='both':
for i in filter(lambda lcs: locus.contains(lcs), matches):
realMatches[i] = None
if sense=='antisense' or sense=='both':
for i in filter(lambda lcs: locus.containsAntisense(lcs), matches):
realMatches[i] = None
return realMatches.keys()
# sense can be 'sense' (default), 'antisense', or 'both'
# returns all members of the collection that contain the locus
def getContainers(self,locus,sense='sense'):
matches = self.__subsetHelper(locus,sense)
### now, get rid of the ones that don't really overlap
realMatches = dict()
if sense=='sense' or sense=='both':
for i in filter(lambda lcs: lcs.contains(locus), matches):
realMatches[i] = None
if sense=='antisense' or sense=='both':
for i in filter(lambda lcs: lcs.containsAntisense(locus), matches):
realMatches[i] = None
return realMatches.keys()
def stitchCollection(self,stitchWindow=1,sense='both'):
'''
reduces the collection by stitching together overlapping loci
returns a new collection
'''
#initializing stitchWindow to 1
#this helps collect directly adjacent loci
locusList = self.getLoci()
oldCollection = LocusCollection(locusList,500)
stitchedCollection = LocusCollection([],500)
for locus in locusList:
#print(locus.coords())
if oldCollection.hasLocus(locus):
oldCollection.remove(locus)
overlappingLoci = oldCollection.getOverlap(Locus(locus.chr(),locus.start()-stitchWindow,locus.end()+stitchWindow,locus.sense(),locus.ID()),sense)
stitchTicker = 1
while len(overlappingLoci) > 0:
stitchTicker+=len(overlappingLoci)
overlapCoords = locus.coords()
for overlappingLocus in overlappingLoci:
overlapCoords+=overlappingLocus.coords()
oldCollection.remove(overlappingLocus)
if sense == 'both':
locus = Locus(locus.chr(),min(overlapCoords),max(overlapCoords),'.',locus.ID())
else:
locus = Locus(locus.chr(),min(overlapCoords),max(overlapCoords),locus.sense(),locus.ID())
overlappingLoci = oldCollection.getOverlap(Locus(locus.chr(),locus.start()-stitchWindow,locus.end()+stitchWindow,locus.sense()),sense)
locus._ID = '%s_%s_lociStitched' % (stitchTicker,locus.ID())
stitchedCollection.append(locus)
else:
continue
return stitchedCollection
#==================================================================
#========================GENE INSTANCE============================
#==================================================================
# this is a gene object. unlike the previous gene_object, this actually represents
# a gene, as opposed to a whole set of genes, which was a poor design in the first place.
class Gene:
# name = name of the gene (string)
# txCoords = list of coords defining the boundaries of the transcipt
# cdCoords = list of coords defining the beginning and end of the coding region
# exStarts = list of coords marking the beginning of each exon
# exEnds = list of coords marking the end of each exon
# IF THIS IS A NON-CODING GENE, cdCoords => [0,0]
# def __init__(self,name,chr,sense,txCoords,cdCoords,exStarts,exEnds):
# self._name = name
# self._txLocus = Locus(chr,min(txCoords),max(txCoords),sense)
# self._cdLocus = Locus(chr,min(cdCoords),max(cdCoords),sense)
#
# exStarts = map(lambda i: i, exStarts)
# exEnds = map(lambda i: i, exEnds)
# exStarts.sort()
# exEnds.sort()
#
# self._txExons = []
# self._cdExons = []
# self._introns = []
#
# for n in range(len(exStarts)):
# if n==0:
# self._txExons.append(Locus(chr,txCoords[0],exEnds[n]-1,sense))
# self._cdExons.append(Locus(chr,cdCoords[0],exEnds[n]-1,sense))
# elif n==len(exStarts)-1:
# self._txExons.append(Locus(chr,txCoords[0],txCoords[1],sense))
# self._cdExons.append(Locus(chr,cdCoords[0],cdCoords[1],sense))
# else:
# newExon = Locus(chr,exStarts[n],exEnds[n]-1,sense)
# self._txExons.append(newExon)
# self._cdExons.append(newExon)
# if n < len(exStarts)-1: self._introns.append(Locus(chr,exEnds[n],exStarts[n+1]-1,sense))
#
# if sense=='+':
# self._fpUtr = Locus(chr,txCoords[0],cdCoords[0]-1,sense)
# self._tpUtr = Locus(chr,cdCoords[1]+1,txCoords[1],sense)
# elif sense=='-':
# self._fpUtr = Locus(chr,cdCoords[1]+1,txCoords[1],sense)
# self._tpUtr = Locus(chr,txCoords[0],cdCoords[0]-1,sense)
def __init__(self,name,chr,sense,txCoords,cdCoords,exStarts,exEnds,commonName=''):
self._name = name
self._commonName = commonName
self._txLocus = Locus(chr,min(txCoords),max(txCoords),sense,self._name)
if cdCoords == None:
self._cdLocus = None
else:
self._cdLocus = Locus(chr,min(cdCoords),max(cdCoords),sense)
exStarts = map(lambda i: i, exStarts)
exEnds = map(lambda i: i, exEnds)
exStarts.sort()
exEnds.sort()
self._txExons = []
self._cdExons = []
self._introns = []
cd_exon_count = 0
for n in range(len(exStarts)):
first_locus = Locus(chr,exStarts[n],exStarts[n],sense)
second_locus = Locus(chr,exEnds[n],exEnds[n],sense)
# Add the transcription unit exon
tx_exon = Locus(chr,exStarts[n],exEnds[n],sense)
self._txExons.append(tx_exon)
# Add Coding Exons
# Need to make sure that the current exon is actually in the coding region of the gene first
if self.isCoding() and tx_exon.overlaps(self._cdLocus):
if not first_locus.overlaps(self._cdLocus):
first_coord = min(cdCoords)
else:
first_coord = exStarts[n]
if not second_locus.overlaps(self._cdLocus):
second_coord = max(cdCoords)
else:
second_coord = exEnds[n]
new_cd_exon = Locus(chr,first_coord,second_coord,sense)
self._cdExons.append(new_cd_exon)
# Add Introns
if n < len(exStarts)-1:
self._introns.append(Locus(chr,exEnds[n]+1,exStarts[n +1]-1,sense))
if self.isCoding():
if sense=='+':
self._fpUTR = Locus(chr,min(txCoords),min(cdCoords)-1,sense)
self._tpUTR = Locus(chr,max(cdCoords)+1,max(txCoords),sense)
elif sense=='-':
self._fpUTR = Locus(chr,max(cdCoords)+1,max(txCoords),sense)
self._tpUTR = Locus(chr,min(txCoords),min(cdCoords)-1,sense)
else:
self._fpUTR = None
self._tpUTR = None
def commonName(self): return self._commonName
def name(self): return self._name
def chr(self): return self._txLocus.chr()
def sense(self): return self._txLocus.sense()
def txLocus(self): return self._txLocus ## locus of full transcript
def cdLocus(self): return self._cdLocus ## locus from start codon to end codon
def txExons(self): return map(lambda i: i, self._txExons) ## list of loci
def cdExons(self): return map(lambda i: i, self._cdExons) ## list of loci
def introns(self): return map(lambda i: i, self._introns) ## list of loci
def fpUtr(self): return self._fpUTR ## locus
def tpUtr(self): return self._tpUTR ## locus
def isCoding(self): return not(self._cdLocus.start()==0 and self._cdLocus.end()==0) # boolean; is this gene protein-coding?
def tss(self,upstream = 0,downstream = 0):
if self._txLocus.sense() == '-':
return Locus(self._txLocus.chr(),self._txLocus.end()-downstream,self._txLocus.end()+upstream,self._txLocus.sense(),self._name)
else:
return Locus(self._txLocus.chr(),self._txLocus.start()-upstream,self._txLocus.start()+downstream,self._txLocus.sense(),self._name)
def __hash__(self): return self._txLocus.__hash__()
#==================================================================
#========================LOCUS FUNCTIONS===========================
#==================================================================
#06/11/09
#turns a locusCollection into a gff
#does not write to disk though
def locusCollectionToGFF(locusCollection):
lociList = locusCollection.getLoci()
gff = []
for locus in lociList:
newLine = [locus.chr(),locus.ID(),'',locus.coords()[0],locus.coords()[1],'',locus.sense(),'',locus.ID()]
gff.append(newLine)
return gff
def gffToLocusCollection(gff,window =500):
'''
opens up a gff file and turns it into a LocusCollection instance
'''
lociList = []
if type(gff) == str:
gff = parseTable(gff,'\t')
for line in gff:
#USE line[2] as the locus ID. If that is empty use line[8]
if len(line[2]) > 0:
name = line[2]
elif len(line[8]) >0:
name = line[8]
else:
name = '%s:%s:%s-%s' % (line[0],line[6],line[3],line[4])
lociList.append(Locus(line[0],line[3],line[4],line[6],name))
return LocusCollection(lociList,window)
def makeTSSLocus(gene,startDict,upstream,downstream):
'''
given a startDict, make a locus for any gene's TSS w/ upstream and downstream windows
'''
start = startDict[gene]['start'][0]
if startDict[gene]['sense'] =='-':
return Locus(startDict[gene]['chr'],start-downstream,start+upstream,'-',gene)
else:
return Locus(startDict[gene]['chr'],start-upstream,start+downstream,'+',gene)
#06/11/09
#takes a locus and expands it by a fixed upstream/downstream amount. spits out the new larger locus
def makeSearchLocus(locus,upSearch,downSearch):
if locus.sense() == '-':
searchLocus = Locus(locus.chr(),locus.start()-downSearch,locus.end()+upSearch,locus.sense(),locus.ID())
else:
searchLocus = Locus(locus.chr(),locus.start()-upSearch,locus.end()+downSearch,locus.sense(),locus.ID())
return searchLocus
#==================================================================
#==========================BAM CLASS===============================
#==================================================================
#11/11/10
#makes a new class Bam for dealing with bam files and integrating them into the SolexaRun class
def convertBitwiseFlag(flag):
if int(flag) & 16:
return "-";
else:
return "+";
class Bam:
'''A class for a sorted and indexed bam file that allows easy analysis of reads'''
def __init__(self,bamFile):
self._bam = bamFile
def getTotalReads(self,readType = 'mapped'):
command = '%s flagstat %s' % (samtoolsString,self._bam)
stats = subprocess.Popen(command,stdin = subprocess.PIPE,stderr = subprocess.PIPE,stdout = subprocess.PIPE,shell = True)
statLines = stats.stdout.readlines()
stats.stdout.close()
if readType == 'mapped':
for line in statLines:
if line.count('mapped (') == 1:
return int(line.split(' ')[0])
if readType == 'total':
return int(statLines[0].split(' ')[0])
def convertBitwiseFlag(self,flag):
if flag & 16:
return "-";
else:
return "+";
def getRawReads(self,locus,sense,unique = False,includeJxnReads = False,printCommand = False):
'''
gets raw reads from the bam using samtools view.
can enforce uniqueness and strandedness
'''
locusLine = locus.chr()+':'+str(locus.start())+'-'+str(locus.end())
command = '%s view %s %s' % (samtoolsString,self._bam,locusLine)
if printCommand:
print(command)
getReads = subprocess.Popen(command,stdin = subprocess.PIPE,stderr = subprocess.PIPE,stdout = subprocess.PIPE,shell = True)
reads = getReads.communicate()
reads = reads[0].split('\n')[:-1]
reads = [read.split('\t') for read in reads]
if includeJxnReads == False:
reads = filter(lambda x: x[5].count('N') < 1,reads)
#convertDict = {'16':'-','0':'+','64':'+','65':'+','80':'-','81':'-','129':'+','145':'-'}
convertDict = {'16':'-','0':'+','64':'+','65':'+','80':'-','81':'-','129':'+','145':'-','256':'+','272':'-','99':'+','147':'-'}
#BJA added 256 and 272, which correspond to 0 and 16 for multi-mapped reads respectively:
#http://onetipperday.blogspot.com/2012/04/understand-flag-code-of-sam-format.html
#convert = string.maketrans('160','--+')
keptReads = []
seqDict = defaultdict(int)
if sense == '-':
strand = ['+','-']
strand.remove(locus.sense())
strand = strand[0]
else:
strand = locus.sense()
for read in reads:
#readStrand = read[1].translate(convert)[0]
#print read[1], read[0]
#readStrand = convertDict[read[1]]
readStrand = convertBitwiseFlag(read[1])
if sense == 'both' or sense == '.' or readStrand == strand:
if unique and seqDict[read[9]] == 0:
keptReads.append(read)
elif not unique:
keptReads.append(read)
seqDict[read[9]]+=1
return keptReads
def readsToLoci(self,reads,IDtag = 'sequence,seqID,none'):
'''
takes raw read lines from the bam and converts them into loci
'''
loci = []
ID = ''
if IDtag == 'sequence,seqID,none':
print('please specify one of the three options: sequence, seqID, none')
return
#convert = string.maketrans('160','--+')
#convertDict = {'16':'-','0':'+','64':'+','65':'+','80':'-','81':'-','129':'+','145':'-'}
#convertDict = {'16':'-','0':'+','64':'+','65':'+','80':'-','81':'-','129':'+','145':'-','256':'+','272':'-'}
#BJA added 256 and 272, which correspond to 0 and 16 for multi-mapped reads respectively:
#http://onetipperday.blogspot.com/2012/04/understand-flag-code-of-sam-format.html
#convert = string.maketrans('160','--+')
numPattern = re.compile('\d*')
for read in reads:
chrom = read[2]
#strand = read[1].translate(convert)[0]
#strand = convertDict[read[1]]
strand = convertBitwiseFlag(read[1])
if IDtag == 'sequence':
ID = read[9]
elif IDtag == 'seqID':
ID = read[0]
else:
ID = ''
length = len(read[9])
start = int(read[3])
if read[5].count('N') == 1:
#this awful oneliner first finds all of the numbers in the read string
#then it filters out the '' and converts them to integers
#only works for reads that span one junction
[first,gap,second] = [int(x) for x in filter(lambda x: len(x) > 0, re.findall(numPattern,read[5]))][0:3]
if IDtag == 'sequence':
loci.append(Locus(chrom,start,start+first,strand,ID[0:first]))
loci.append(Locus(chrom,start+first+gap,start+first+gap+second,strand,ID[first:]))
else:
loci.append(Locus(chrom,start,start+first,strand,ID))
loci.append(Locus(chrom,start+first+gap,start+first+gap+second,strand,ID))
elif read[5].count('N') > 1:
continue
else:
loci.append(Locus(chrom,start,start+length,strand,ID))
return loci
def getReadsLocus(self,locus,sense = 'both',unique = True,IDtag = 'sequence,seqID,none',includeJxnReads = False):
'''
gets all of the reads for a given locus
'''
reads = self.getRawReads(locus,sense,unique,includeJxnReads)
loci = self.readsToLoci(reads,IDtag)
return loci
def getReadSequences(self,locus,sense = 'both',unique = True,includeJxnReads = False):
reads = self.getRawReads(locus,sense,unique,includeJxnReads)
return [read[9] for read in reads]
def getReadStarts(self,locus,sense = 'both',unique = False,includeJxnReads = False):
reads = self.getRawReads(locus,sense,unique,includeJxnReads)
return [int(read[3]) for read in reads]
def getReadCount(self,locus,sense = 'both',unique = True,includeJxnReads = False):
reads = self.getRawReads(locus,sense,unique,includeJxnReads)
return len(reads)
#==================================================================
#========================MISC FUNCTIONS============================
#==================================================================