-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathReberSequenceTrainer.cs
162 lines (139 loc) · 6.92 KB
/
ReberSequenceTrainer.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
using System;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using BrightData;
using BrightWire;
using BrightWire.TrainingData.Artificial;
namespace ExampleCode.DataTableTrainers
{
internal class ReberSequenceTrainer(IDataTable dataTable) : DataTableTrainer(dataTable)
{
public async Task<IGraphExecutionEngine> TrainSimpleRecurrent()
{
var graph = _context.CreateGraphFactory();
var errorMetric = graph.ErrorMetric.CrossEntropy;
// configure the network properties
graph.CurrentPropertySet
.Use(graph.GradientDescent.RmsProp)
.Use(graph.WeightInitialisation.Xavier)
;
// create the engine
var trainingData = await graph.CreateDataSource(Training);
var testData = trainingData.CloneWith(Test);
var engine = graph.CreateTrainingEngine(trainingData, errorMetric, learningRate: 0.03f, batchSize: 32);
// build the network
const int hiddenLayerSize = 50, trainingIterations = 40;
graph.Connect(engine)
.AddSimpleRecurrent(graph.SigmoidActivation(), hiddenLayerSize, "layer1")
.AddRecurrentBridge("layer1", "layer2")
.AddSimpleRecurrent(graph.SigmoidActivation(), hiddenLayerSize, "layer2")
.AddFeedForward(engine.DataSource.GetOutputSizeOrThrow())
.Add(graph.TanhActivation())
.AddBackpropagationThroughTime()
;
engine.LearningContext.ScheduleLearningRate(10, 0.01f);
engine.LearningContext.ScheduleLearningRate(20, 0.003f);
var model = await engine.Train(trainingIterations, testData);
return engine.CreateExecutionEngine(model?.Graph);
}
public async Task<IGraphExecutionEngine> TrainGru()
{
var graph = _context.CreateGraphFactory();
var errorMetric = graph.ErrorMetric.BinaryClassification;
// configure the network properties
graph.CurrentPropertySet
.Use(graph.GradientDescent.RmsProp)
.Use(graph.WeightInitialisation.Xavier)
;
// create the engine
var learningRate = 0.01f;
var trainingData = await graph.CreateDataSource(Training);
var testData = trainingData.CloneWith(Test);
var engine = graph.CreateTrainingEngine(trainingData, errorMetric, learningRate, batchSize: 32);
// build the network
const int hiddenLayerSize = 30, trainingIterations = 50;
graph.Connect(engine)
.AddGru(hiddenLayerSize, "layer1")
//.AddRecurrentBridge("layer1", "layer2")
//.AddGru(hiddenLayerSize, "layer2")
.AddFeedForward(engine.DataSource.GetOutputSizeOrThrow())
.Add(graph.SoftMaxActivation())
.AddBackpropagationThroughTime()
;
engine.LearningContext.ScheduleLearningRate(15, learningRate / 3);
engine.LearningContext.ScheduleLearningRate(30, learningRate / 9);
var model = await engine.Train(trainingIterations, testData);
return engine.CreateExecutionEngine(model?.Graph);
}
public async Task<IGraphExecutionEngine> TrainLstm()
{
var graph = _context.CreateGraphFactory();
var errorMetric = graph.ErrorMetric.BinaryClassification;
// configure the network properties
graph.CurrentPropertySet
.Use(graph.GradientDescent.RmsProp)
.Use(graph.WeightInitialisation.Xavier)
;
// create the engine
var trainingData = await graph.CreateDataSource(Training);
var testData = trainingData.CloneWith(Test);
var learningRate = 0.01f;
var engine = graph.CreateTrainingEngine(trainingData, errorMetric, learningRate, batchSize: 32);
// build the network
const int hiddenLayerSize = 30, trainingIterations = 50;
graph.Connect(engine)
.AddLstm(hiddenLayerSize, "encoder1")
//.AddRecurrentBridge("encoder1", "encoder2")
//.AddLstm(hiddenLayerSize, "encoder2")
.AddFeedForward(engine.DataSource.GetOutputSizeOrThrow())
.Add(graph.SoftMaxActivation())
.AddBackpropagationThroughTime()
;
engine.LearningContext.ScheduleLearningRate(15, learningRate / 3);
engine.LearningContext.ScheduleLearningRate(30, learningRate / 9);
var model = await engine.Train(trainingIterations, testData);
return engine.CreateExecutionEngine(model?.Graph);
}
public static async Task GenerateSequences(IGraphExecutionEngine engine)
{
Console.WriteLine("Generating new reber sequences from the observed state probabilities...");
for (var z = 0; z < 10; z++)
{
// prepare the first input
var input = new float[ReberGrammar.Size];
input[ReberGrammar.GetIndex('B')] = 1f;
Console.Write("B");
uint index = 0, eCount = 0;
var context = engine.LinearAlgebraProvider.Context;
var executionContext = engine.CreateExecutionContext();
var result = await engine.ExecuteSingleSequentialStep(executionContext, index++, input, MiniBatchSequenceType.SequenceStart).FirstOrDefault();
if (result != null) {
var sb = new StringBuilder();
for (var i = 0; i < 32; i++) {
var next = result!.Output[0].ToArray()
.Select((v, j) => ((double) v, j))
.Where(d => d.Item1 >= 0.1f)
.ToList();
if (next.Count == 0)
break;
var distribution = context.CreateCategoricalDistribution(next.Select(d => (float)d.Item1));
var nextIndex = next[(int)distribution.Sample()].j;
sb.Append(ReberGrammar.GetChar(nextIndex));
if (nextIndex == ReberGrammar.GetIndex('E') && ++eCount == 2)
break;
Array.Clear(input, 0, ReberGrammar.Size);
input[nextIndex] = 1f;
result = await engine.ExecuteSingleSequentialStep(executionContext, index++, input, MiniBatchSequenceType.Standard).FirstOrDefault();
}
var str = sb.ToString();
Console.Write(str);
if(str[0] == str[^2])
Console.WriteLine(" - end sequence matched start sequence");
else
Console.WriteLine();
}
}
}
}
}