- This is the official repository of the code of "Robust Smart Home Face Recognition under Starving Federated Data" paper, which has been accepted by the IEEE International Conference on Universal Village (IEEE UV2022).
- We propose a novel robust federated learninng training method for smart home face recognition system named FLATS: Federated Learning Adversarial Training for Smart Home Face Recognition System.
- For general overview of the training process, take a look at the
notebook/FLATS.ipynb
file. - The code will be continously updated.
- Oral Presentation Link: https://youtu.be/Tj9QiJEUBXU
- Includes software related under the MIT and Apache 2.0 license
Arguments to be parsed:
- --main_folder_path
- --num_clients (default=5)
- --train_batch_size (default=64)
- --test_batch_size (default=64)
- --num_selected (default=5)
- --num_attack (default=1)
- --num_rounds (default=10)
- --num_local_epochs (default=5)
- --clean_train_batch_ratio (default=5)
- --atk (default=FFGSM(white_model, eps=8/255, alpha=10/255))
Run:
CUDA_VISIBLE_DEVICES=0 python main.py \
--main_folder_path 'pins_face_recognition_105_classes' \
--num_clients 5 \
--train_batch_size 64 \
--test_batch_size 64 \
--num_selected 5 \
--num_attack 1 \
--num_rounds 10 \
--num_local_epochs 5 \
--clean_train_batch_ratio 5 \
--atk FFGSM(white_model, eps=8/255, alpha=10/255)