Skip to content
/ FLATS Public

Code of the IEEE UV2022 accepted paper "Robust Smart Home Face Recognition under Starving Federated Data"

Notifications You must be signed in to change notification settings

jrohsc/FLATS

Repository files navigation

FLATS: Federated Learning Adversarial Training for Smart Home Face Recognition System

robust_FL_diagram_noniid

LICENSES

  • Includes software related under the MIT and Apache 2.0 license

Run

Arguments to be parsed:

  • --main_folder_path
  • --num_clients (default=5)
  • --train_batch_size (default=64)
  • --test_batch_size (default=64)
  • --num_selected (default=5)
  • --num_attack (default=1)
  • --num_rounds (default=10)
  • --num_local_epochs (default=5)
  • --clean_train_batch_ratio (default=5)
  • --atk (default=FFGSM(white_model, eps=8/255, alpha=10/255))

Run:

CUDA_VISIBLE_DEVICES=0 python main.py \
  --main_folder_path 'pins_face_recognition_105_classes' \ 
  --num_clients 5 \ 
  --train_batch_size 64 \ 
  --test_batch_size 64 \ 
  --num_selected 5 \ 
  --num_attack 1 \ 
  --num_rounds 10 \ 
  --num_local_epochs 5 \ 
  --clean_train_batch_ratio 5 \ 
  --atk FFGSM(white_model, eps=8/255, alpha=10/255)

About

Code of the IEEE UV2022 accepted paper "Robust Smart Home Face Recognition under Starving Federated Data"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published