-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathconfig_loader.py
executable file
·368 lines (315 loc) · 23.3 KB
/
config_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import os
print('set OMP_NUM_THREADS=16, for the ME engine')
os.environ["OMP_NUM_THREADS"] = "16"
import configargparse
import numpy as np
import random
import torch
def config_parser():
parser = configargparse.ArgumentParser()
parser.add_argument('--config', is_config_file=True,
help='config file path')
parser.add_argument("--exp_name", type=str, default=None,
help='Experiment name, used as folder name for the experiment.')
parser.add_argument("--data_dir", type=str, default='./data/scannet/',
help='data directory')
parser.add_argument("--data_split", type=str, default='data/scannet/scannetv2_official_split.npz',
help='Path to the data split file.')
parser.add_argument("--dataset_name", type=str, default='scannet',
help='Name of the dataste. Options: {scannet, arkitscenes}')
# --------------------- MODEL / DATA ----------------------------------------------------------------
parser.add_argument("--num_workers", type=int, default=16,
help='Number of worker processes preparing input data.'
'The larger the better, but should not exceed the number of available CPUs.')
parser.add_argument("--use_normals_input", default=False, action="store_true",
help="Use normal vectors as inputs for geometric encoding")
# --------------------------- ARKitScenes -------------------------
parser.add_argument("--subsample_rate", type=int, default=10,
help="subsample rate of the point cloud, arscenes are 10 times larger than scannet")
# --------------------- S3DIS SETTING ----------------------------------------------------------------
parser.add_argument ('--s3dis_split_fold', default=5, type=int,
help='which data fold will be used for validation/testing.')
parser.add_argument ('--point_sampling_rate', default=None, type=float,
help='Sub-sampling point rate for s3dis dataset (the data is very dense which require heavy memory consumption)')
parser.add_argument ('--superpoint_algo', default='learned_superpoint', type=str, choices=['learned_superpoint'],
help='Choose the oversegmentations to process. Choices are: \
learned_superpoint - Use the superpoint from the learned superpoint graph work - (https://github.com/loicland/superpoint_graph - LandrieuCVPR18)')
parser.add_argument ('--ignore_wall_ceiling_floor', default=False, action='store_true',
help='Do not calculate loss of bounds, offsets and confidence score for wall, floor and ceiling instances')
parser.add_argument ('--ignore_ceiling_floor', default=False, action='store_true',
help='Do not calculate loss of bounds, offsets and confidence score for floor and ceiling instances. (NOTE: wall is still predicted)')
parser.add_argument ('--full_resolution', default=False, action='store_true',
help='Upsample to the point cloud when writing/evaluating the final prediction')
# --------------------- BB SUPERVISION ----------------------------------------------------------------
parser.add_argument("--bb_supervision", default=False, action="store_true",
help="If true, use only bounding boxes as supervision signal.")
parser.add_argument("--point_association", default=False, action="store_true",
help="If true, get associations only based on points, if false, incorporate segments.")
parser.add_argument("--smallest_bb_heuristic", default=False, action="store_true",
help="If true, get associations based on smallest bb.")
parser.add_argument("--majority_vote", default=False, action="store_true",
help="If true, do majority vote per segment on point association data.")
parser.add_argument("--dropout_boxes", type=float, default=None,
help="If set to a float value, represents probability to drop boxes. Default: no dropout.")
parser.add_argument("--noisy_boxes", type=float, default=None,
help="If set to a float value, represents 2 times the std_dev used for sampling gaussian noise"
" to displace min_pt and max_pt of gt bounding boxes.")
# ----------------------- DATA PROCESSING -----------------------------------------------------------
parser.add_argument("--voxel_size", type=float, default=0.02,
help="size of each voxel after the voxelization process of point cloud (eg. 0.02 is 2 cm)")
parser.add_argument("--align", default=False, action='store_true',
help='Whether to align scenes to axis or not.')
parser.add_argument("--dont_align", default=False, action='store_true',
help='Overwrites align.')
parser.add_argument("--debug", default=False, action='store_true',
help='Compute only a few scenes, and save result visualization to disk.')
parser.add_argument("--slurm_array_id", type=int,
help="Array ID of slurm for multi processing jobs.")
# --------------------------- MULTI GPU --------------------------------------------------------------
parser.add_argument("--multigpu", default=False, action='store_true',
help='Use multiple gpus.')
parser.add_argument("--singlegpu", default=False, action='store_true',
help='Use single gpu (Default). Overwrites multigpu.')
# --------------------------- DEBUGGING --------------------------------------------------------------
parser.add_argument("--overfit_to_single_scene", type=int, default=None,
help='For debugging: Whether to train on a single scene. Defines index of scene to overfit to.')
parser.add_argument("--overfit_to_single_scene_str", type=str, default=None,
help='For debugging: Whether to train on a single scene. Defines string of scene to overfit to.')
parser.add_argument("--dataset_size", type=int, default=None,
help='For debugging: only use the specified number of samples from the dataset.')
# -------------------------- EVAL/ PREDICTIOn ------------------------------------------------------------------
parser.add_argument("--checkpoint", type=str, default=None,
help='Checkpoint that will be loaded for prediction/evaluation.')
parser.add_argument("--fixed_seed", type=int, default=None,
help='Set a fixed seed for all random operations.')
parser.add_argument("--sample_fixed_seed", default=False, action='store_true',
help="If true, a single random seed will be sampled and used as fixed_seed.")
parser.add_argument("--predict_specific_scene", type=str, default=None,
help="specify a scene from train or validation set to make a prediction and visualize")
# ----------------- DETECTION NET - EVAL ---------------------------------
parser.add_argument("--eval_ths", type=float, nargs=4, default=None,
help="Converting predictions to masks thresholds: "
"cluster_th, score_th, mask_bin_th, mask_nms_th. Used for detection net evaluations")
parser.add_argument("--load_ckpt_closest_to", type=int, default=None,
help='For eval only: Load the checkpoint closest to the specified number of training hours.')
parser.add_argument("--eval_training", default=False, action='store_true',
help="Eval multiple training checkpoints into tensorboard.")
parser.add_argument("--produce_visualizations", default=False, action='store_true',
help="Save model predictions as visualizations.")
parser.add_argument("--eval_device", type=str, default='cuda',
help='Device (cuda/cpu) to do evaluation on.')
parser.add_argument("--eval_wo_aug", default=False, action='store_true',
help="Eval turning off all augmentations.")
parser.add_argument("--submission_write_out", default=False, action='store_true',
help="Save results in submission format for ScanNet benchmark.")
parser.add_argument("--submission_write_out_testset", default=False, action='store_true',
help="Save results in submission format for ScanNet benchmark.")
parser.add_argument("--fig3", default=False, action='store_true',
help="Do visualizations for fig 3 in paper.")
### Param Search ---------------------------------
parser.add_argument("--param_search", default=False, action='store_true',
help="Do param search of non-maximum-clustering.")
parser.add_argument("--eval_specific_param", default=False, action='store_true',
help="Not a human interface. Only set via code.")
parser.add_argument("--cluster_th_search", default=[0.3, 0.8, 6], nargs=3,
help='Input to np.linspace: min_val, max_val, num of equal intervals (incl. start and end).')
parser.add_argument("--score_th_search", default=[0, 0.2, 5], nargs=3,
help='Input to np.linspace: min_val, max_val, num of equal intervals (incl. start and end).')
parser.add_argument("--mask_bin_th_search", default=[ 0.2, 0.35, 4], nargs=3,
help='Input to np.linspace: min_val, max_val, num of equal intervals (incl. start and end).')
parser.add_argument("--mask_nms_th_search", default=[ 0.4, 0.8, 5], nargs=3,
help='Input to np.linspace: min_val, max_val, num of equal intervals (incl. start and end).')
# -------------------------- TRAINING ------------------------------------------------------
parser.add_argument("--eval_first", dest='skip_first_eval', action='store_false',
help="If true, training code does initial evaluation when starting training.")
parser.set_defaults(skip_first_eval=True)
parser.add_argument("--eval_every", type=int, default=12,
help='Int: do full evaluation on validation set each X epoch.')
parser.add_argument("--val_every", type=int, default=12,
help='Int: do 5 batch loss evaluation on validation set each X epoch.')
parser.add_argument("--ckpt_every", type=int, default=4,
help='Int: save checkpoint every X epoch.')
parser.add_argument("--train_submission", default=False, action='store_true',
help="For ScanNet submission. If true, training and validation dataset are used for training.")
parser.add_argument("--loose_model_loading", default=False, action='store_true',
help="If true, model loading is not done in strict, exact key matching mode.")
parser.add_argument("--load_unused_head", default=False, action='store_true',
help="For backwards compatibility - should be removed!")
parser.add_argument("--apple_warmstart", default=False, action='store_true',
help="Warm start training, excluding mismatching semantic layer.")
parser.add_argument("--batch_size", type=int, default=4,
help='Number of scene chunks provided to the NDF network in one batch during training.\
Influences training speed (larger batches result in shorter epochs) but also GPU \
memory usage (higher values need more memory). Needs to be balanced with \
num_sample_points_training')
parser.add_argument("--num_epochs", type=int, default=1500,
help='Stopping citron for duration of training. Model converges much earlier: model convergence\
can be checked via tensorboard and is logged within the experiment folder.')
parser.add_argument("--lr", type=float, default=1e-6,
help='Learning rate used during training.')
parser.add_argument("--optimizer", type=str, default='Adam',
help='Optimizer used during training.')
parser.add_argument("--loss_on_all_instances", default=False, action='store_true',
help='Overwrites loss_on_fg_instances. Apply loss for bounding box bounds and offsets on all '
'instances, including BG.')
parser.add_argument("--num_eval_batches", type=int, default=5,
help='Number of validation batches processed for valid loss evaluation ')
# learning rate scheduler
parser.add_argument("--use_lr_scheduler", default=False, action='store_true',
help="If ture, cosine LR scheduler is used, else none is used.")
parser.add_argument("--lr_scheduler_start_epoch", type=int,
help='Epoch when scheduler starts changing the LR.')
parser.add_argument("--lr_scheduler_end_epoch", type=int,
help='Epoch when LR = 0.')
# ---------------- AUGMENTATIONS -----------------------------------------------------------
parser.add_argument("--augmentation", default=False, action='store_true',
help="Use augmentations during training.")
parser.add_argument("--position_jittering", type=float, default=[0.00, 0.01], nargs=2, metavar=['prob', 'sigma'],
help="Randomly translate the postions of each points in each dimension. \
The displacement distances are sampled from a Gaussion distribution with sigma as std variance")
parser.add_argument("--scaling_aug", type=float, default=[0.0, 0.9, 1.1], nargs=3, metavar=('prob', 'min', 'max'),
help='Randomly scale up or down the scene with a scaling factor within [min, max]. \
Prob is the probability of using the augmentation.')
parser.add_argument("--color_jittering_aug", default=[0.0, 0.1], type=float, nargs=2, metavar=('prob', 'jitter_range'),
help='Add a random noise within [-jitter_range, jitter_range] to each of the RGB channel. \
Prob is the probability of using the augmentation.')
parser.add_argument("--HAIS_jitter_aug", default=False, action="store_true",
help="Point jittering of HAIS.")
parser.add_argument("--rotation_aug", type=float, default=[0.0, np.pi / 100, 1], nargs="+",
help='We uniformly random sample one rotation (for z-axis) within [-pi,pi] ,\
one rotation (for x-axis) and one rotation for y-axis within [-max_xy_angle, max_xy_angle]. \
Prob is the probability of using the augmentation.'
' individual_prob defines probability to turn on/off z/x/y-rotation, each sampled'
' individually.')
parser.add_argument("--rotation_90_aug", default=False, action="store_true",
help="If true, we uniformly sample one rotation in 0,90,180,270 degree.")
parser.add_argument("--mix_3d_color_aug", default=False, action="store_true",
help="If true, we use mix3d color augmentation and normalization.")
parser.add_argument("--apply_hue_aug", default=False, action="store_true",
help="If true, we use mix3d color augmentation and normalization.")
parser.add_argument("--flipping_aug", default=0.0, metavar='prob', type=float,
help='Randomly flip the scene along x or y axis. Prob is the probability of randomly flipping in each axis.')
parser.add_argument("--elastic_distortion", default=0.0, metavar='prob', type=float,
help='Apply elastic distortion with the default parameters in the Spatio Temporal Segmentation work. Prob is the probability of using the augmentation')
parser.add_argument("--elastic_distortion_HAIS", default=0.0, metavar='prob', type=float,
help='Slightly different parameter setting to "elastic_distortion".')
parser.add_argument("--chromatic_auto_contrast", default=0.0, metavar='prob', type=float,
help="The probability to randomly blend the original color with a rescaled contrast color. \
Prob is the probability of using the augmentation.")
parser.add_argument("--chromatic_translation", type=float, default=[0.0, 0.1], metavar=('prob', 'trans_range_ratio'), nargs=2,
help="Add random color to the image. Trans_range_ratio: ratio of translation i.e. 1.0 * 2 * ratio * rand(-0.5, 0.5). \
Prob is the probability of using the augmentation.")
parser.add_argument("--random_brightness", type=float, default=[0.0, 0.1], metavar=('prob', 'factor_range'), nargs=2,
help="Randomly multiply the brighness by a factor that is between (1-factor_range, 1+factor_range).")
# ----------------- DETECTION NET -----------------------------------
parser.add_argument("--do_segment_pooling", default=False, action="store_true",
help="Boolean, indicating if we want to do prediction per segment instead of per voxel.")
parser.add_argument("--network_heads", default=None, type=str, nargs="+",
choices=["mlp_offsets", "mlp_bounds", "mlp_bb_scores", "mlp_semantics", "mlp_center_scores", "mlp_per_vox_semantics"],
help="Lists of network heads. Possible values: mlp_offsets, mlp_bounds, mlp_bb_scores, mlp_per_vox_semantics"
" mlp_semantics")
parser.add_argument("--mlp_bounds_relu", default=False, action="store_true",
help="Boolean, indicating if we want to use relu activation for mlp_bounds")
parser.add_argument("--max_pool_segments_detection_net", default=False, action="store_true",
help="Boolean, indicating if we want to use max pool instead of AVG pool over segments in "
"selection net model.")
parser.add_argument("--layers", type=int, default=2,
help="Number of convolution layers in each u-net block. Default = 2")
# ----------------- DETECTION NET - LOSSES --------------------------
parser.add_argument("--use_bb_iou_loss", default=False, action="store_true",
help="If true we use IOU loss additionally to bb_offset and bb_bounds loss.")
parser.add_argument("--loss_weight_semantics", type=float, default=None,
help="Weight applied to the loss on per voxel semantics prediction")
parser.add_argument("--loss_weight_bb_offsets", type=float, default=1.0,
help="Weight applied to the loss on the BB offsets.")
parser.add_argument("--loss_weight_bb_bounds", type=float, default=None,
help="Weight applied to the loss on the BB bounds.")
parser.add_argument("--loss_weight_bb_scores", type=float, default=None,
help="Weight applied to the bb score loss.")
parser.add_argument("--loss_weight_center_scores", type=float, default=None,
help="Weight applied to the center score loss.")
parser.add_argument("--loss_weight_bb_iou", type=float, default=None,
help="Weight applied to the bb iou loss.")
parser.add_argument("--loss_weight_per_vox_semantics", type=float, default=1,
help="Weight applied to the loss on per voxel semantics prediction")
parser.add_argument("--mlp_bb_scores_start_epoch", default=0, type=int,
help="Epoch, when training of mlp_bb_scores is started.")
parser.add_argument("--mlp_center_scores_start_epoch", default=0, type=int,
help="Epoch, when training of mlp_center_scores is started.")
parser.add_argument("--min_bb_size", default=0.04, type=float,
help="Minimum size of the bounding box side lengths. Set to 'None' for no post-processing.")
return parser
def get_config(args=None):
import os
parser = config_parser()
cfg = parser.parse_args(args)
# to avoid configargparse bug
if cfg.singlegpu:
cfg.multigpu = False
if cfg.dont_align:
cfg.align = False
cfg.loss_on_fg_instances = True
if cfg.loss_on_all_instances:
cfg.loss_on_fg_instances = False
if len(cfg.rotation_aug) == 1:
cfg.rotation_aug = [cfg.rotation_aug[0], np.pi / 100, 1]
if cfg.sample_fixed_seed:
random_data = os.urandom(4)
cfg.fixed_seed = int.from_bytes(random_data, byteorder="big")
if cfg.fixed_seed:
set_fixed_seed(cfg)
if cfg.dropout_boxes:
assert 0 <= cfg.dropout_boxes <= 1
# define variable names
cfg.mlp_offsets = "mlp_offsets"
cfg.mlp_bounds = "mlp_bounds"
cfg.mlp_bb_scores = "mlp_bb_scores"
cfg.mlp_center_scores = "mlp_center_scores"
cfg.mlp_semantics = "mlp_semantics"
cfg.mlp_per_vox_semantics = "mlp_per_vox_semantics"
cfg.network_heads_options = [cfg.mlp_offsets, cfg.mlp_bounds, cfg.mlp_bb_scores,
cfg.mlp_semantics, cfg.mlp_center_scores, cfg.mlp_per_vox_semantics]
cfg.full_model = False
if (cfg.mlp_bounds in cfg.network_heads and
cfg.mlp_offsets in cfg.network_heads and
((cfg.mlp_semantics in cfg.network_heads) or (cfg.mlp_per_vox_semantics in cfg.network_heads)) and
cfg.mlp_bb_scores in cfg.network_heads):
cfg.full_model = True
else:
print('Warning: this is not a model allowing for instance segmentation.'
' mAP plotting during training is turned off.')
cfg.in_channels = 3 + 3 * cfg.use_normals_input # RGB + normal (if use it)
if cfg.exp_name == 'cfg_name':
cfg_name = os.path.basename(cfg.config)
assert cfg_name[-4:] == '.txt'
cfg.exp_name = cfg_name[:-4]
cfg.exp_path = os.path.dirname(__file__) + '/experiments/{}/'.format(cfg.exp_name)
cfg.checkpoint_path = cfg.exp_path + 'checkpoints/'.format(cfg.exp_name)
if cfg.mlp_center_scores in cfg.network_heads:
assert cfg.mlp_offsets
assert set(cfg.network_heads) <= set(cfg.network_heads_options)
# no duplicates
assert len(np.unique(cfg.network_heads)) == len(cfg.network_heads)
if cfg.batch_size == 1:
print('WARNING: batch size is set 1. Our model is quiet deep and pools some of the smallest scenes to single'
' voxel. In that case an error in the batch normalization is likely. Set batch size > 1!')
if cfg.mlp_bb_scores in cfg.network_heads and cfg.loss_weight_bb_scores is None:
raise
if cfg.mlp_semantics in cfg.network_heads:
if not cfg.loss_weight_semantics:
raise
if cfg.use_bb_iou_loss:
if not (cfg.mlp_offsets in cfg.network_heads and cfg.mlp_bounds in cfg.network_heads):
raise
if cfg.loss_weight_bb_iou is None:
raise
return cfg
def set_fixed_seed(cfg):
torch.backends.cudnn.deterministic = True
random.seed(cfg.fixed_seed)
torch.manual_seed(cfg.fixed_seed)
torch.cuda.manual_seed(cfg.fixed_seed)
np.random.seed(cfg.fixed_seed)
print(f'Fixed seed is: {cfg.fixed_seed}')
if __name__ == '__main__':
print(get_config())