-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrunNSTcomparisons.m
296 lines (243 loc) · 8.87 KB
/
runNSTcomparisons.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
% This is the script used to perform testcase comparisons for qqr, NST, and
% optionally, the full Kronecker form, for the QQR that were reported in
%
% Borggaard and Zietsman, The Quadratic-Quadratic Regulator:
% Proc. American Conference on Control, Denver, CO, 2020.
% Available at arxiv.org/abs/1910.03396
%
% This can also be used to verify the QQR software.
%
% Solutions from NST are provided in the ka and py arrays.
%
% if testFull==true
% - solutions from AlbrekhtKronQQR are provided in the kF and vF arrays.
% - this can require a lot of memory and CPU time, so keep n, m, and the
% degree variables small. It has not yet been optimized to build an
% upper triangular system but primarily used for testing and debugging.
%%
% Variables: n, m, degree, A, B, N, Q, R and
% Flag: testFull must be specified
%
% We assume that [k,v] = qqr(A,B,Q,R,N, degree) has already been called
% and the problem sizes are small enough so NST is feasible.
%
% Author: Jeff Borggaard, Virginia Tech
%
% Part of the QQR library.
%%
verbose = true; % writes out Kron<->CT mapping times.
setKroneckerToolsPath
setNSTpath
addpath('./testScripts')
% this script is fairly useless without the NST solution
if ( exist('Nxu','var') ) % the qbqr case
[ka,py] = runNST(A,B,Q,R,Nxx,degree,Nxu,Nuu);
elseif (exist('N2','var') && exist('N3','var')) % the cqr case
[ka,py] = runNST3(A,B,Q,R,N2,N3,degree);
elseif (iscell(N)) % the pqr case
[ka,py] = runNSTl(A,B,Q,R,N,degree);
else % the qqr case
[ka,py] = runNST(A,B,Q,R,N,degree);
end
py = 2*py; % NST assumes an additional factor of 1/2 that we don't.
%% Calculate via the full Kronecker product formula
if ( exist('testFull','var') && testFull )
tic
[kF,vF] = AlbrekhtKronQQR(A,B,Q,R,N,min(degree,4));
comp = toc;
disp('')
fprintf('AlbrekhtKronQQR solution required %g seconds\n',comp)
end
if ( degree>1 )
tic;
C2 = CT2Kron(n,2);
S2 = Kron2CT(n,2);
C3 = CT2Kron(n,3);
S3 = Kron2CT(n,3);
CTtime = toc;
if ( verbose )
fprintf('CT to Kron mappings (2+3) required %g seconds\n',CTtime)
end
k2 = k{2};
v3 = v{3};
idx1 = n;
idx2 = idx1 + n*(n+1)/2;
idx3 = idx2 + n*(n+1)*(n+2)/6;
idx4 = idx3 + n*(n+1)*(n+2)*(n+3)/24;
idx5 = idx4 + n*(n+1)*(n+2)*(n+3)*(n+4)/120;
idx6 = idx5 + n*(n+1)*(n+2)*(n+3)*(n+4)*(n+5)/720;
idx7 = idx6 + n*(n+1)*(n+2)*(n+3)*(n+4)*(n+5)*(n+6)/5040;
ka2 = ka(:,idx1 +1:idx2 );
py3 = py( idx2-idx1+1:idx3-idx1);
e_k2 = norm( ka2 - k2*S2' );
fprintf('NST: The norm of k^[2] is %g\n',norm(ka2));
fprintf('NST: The norm of v^[3] is %g\n',norm(py3));
fprintf('tensor: The relative error in k^[2] is %g\n',e_k2/norm(ka2));
e_p3 = norm( py3 - v3*S3' );
fprintf('tensor: The relative error in v^[3] is %g\n\n',e_p3/norm(py3));
if ( exist('testFull','var') && testFull )
vF2 = vF{2};
vF3 = vF{3};
kF1 = kF{1};
kF2 = kF{2};
% Convert to compact Taylor format for comparison with the NST toolbox
% solution.
e_k2 = norm( ka2 - kF2*S2' );
fprintf('FullKr: The relative error in k^[2] is %g\n',e_k2/norm(ka2));
e_p3 = norm( py3 - vF3*S3' );
fprintf('FullKr: The relative error in v^[3] is %g\n\n',e_p3/norm(py3));
end
end
if ( degree>2 )
tic;
C4 = CT2Kron(n,4);
S4 = Kron2CT(n,4);
CTtime = toc;
if ( verbose )
fprintf('CT to Kron mappings (4) require %g seconds\n',CTtime)
end
% if ( testTensor )
% Al{4} = ABKT;
% r2 = R(:)/2;
% bb = -( kron( (B*kk2+N).', eye(n^2) ) + ...
% kron( kron( eye(n ), (B*kk2+N).'), eye(n) ) + ...
% kron( eye(n^2), (B*kk2+N).' ) )*vv3(:) ...
% - kron(kk2.',kk2.')*r2 ;
% v4 = lyapunov_recursive(Al,reshape(bb,n,n,n,n));
% comp = comp+toc;
% fprintf(' tensorized solution required %g seconds\n',comp);
%
% res = zeros(n*n*n,m);
% for i=1:m
% GG = ( kron( B(:,i).', eye(n^3) ) + ...
% kron( eye(n ), kron(B(:,i).', eye(n^2) ) ) + ...
% kron( eye(n^2), kron(B(:,i).', eye(n ) ) ) + ...
% kron( eye(n^3), B(:,i).' ) );
% GG = C3*S3*GG;
% res(:,i) = -GG*vv4(:);
% end
% k3 = R\res.';
% end
k3 = k{3};
v4 = v{4};
ka3 = ka(:,idx2 +1:idx3 );
py4 = py( idx3-idx1+1:idx4-idx1);
fprintf('NST: The norm of k^[3] is %g\n',norm(ka3));
fprintf('NST: The norm of v^[4] is %g\n',norm(py4));
e_k3 = norm( ka3 - k3*S3' );
fprintf('tensor: The relative error in k^[3] is %g\n',e_k3/norm(ka3));
e_p4 = norm( py4 - v4*S4' );
fprintf('tensor: The relative error in v^[4] is %g\n\n',e_p4/norm(py4));
if ( exist('testFull','var') && testFull )
kF3 = kF{3};
vF4 = vF{4};
% Convert to compact Taylor format for comparison with the NST toolbox
% solution.
e_k3 = norm( ka3 - kF3*S3' );
fprintf('FullKr: The relative error in k^[3] is %g\n',e_k3/norm(ka3));
e_p4 = norm( py4 - vF4*S4' );
fprintf('FullKr: The relative error in v^[4] is %g\n\n',e_p4/norm(py4));
end
end
if ( degree>3 )
tic;
S5 = Kron2CT(n,5);
CTtime = toc;
if ( verbose )
fprintf('CT to Kron mappings (5) require %g seconds\n',CTtime)
end
% if ( testTensor )
% Al{5} = ABKT;
% bb = -( kron( (B*kk2+N).', eye(n^3) ) + ...
% kron( kron( eye(n ), (B*kk2+N).' ), eye(n^2) ) + ...
% kron( kron( eye(n^2), (B*kk2+N).' ), eye(n) ) + ...
% kron( eye(n^3), (B*kk2+N).' ) )*vv4(:) ...
% -( kron( (B*kk3 ).', eye(n^2) ) + ...
% kron( kron( eye(n ), (B*kk3 ).' ), eye(n ) ) + ...
% kron( eye(n^2), (B*kk3 ).' ) )*vv3(:) ...
% -( kron(kk2.',kk3.') + kron(kk3.',kk2.') )*r2 ;
% vv5 = lyapunov_recursive(Al,reshape(bb,n,n,n,n,n));
% comp = comp+toc;
% fprintf(' tensorized solution required %g seconds\n',comp);
%
% res = zeros(n*n*n,m);
% for i=1:m
% GG = ( kron( B(:,i).',eye(n^4) ) + ...
% kron( eye(n ),kron(B(:,i).',eye(n^3) ) ) + ...
% kron( eye(n^2),kron(B(:,i).',eye(n^2) ) ) + ...
% kron( eye(n^3),kron(B(:,i).',eye(n ) ) ) + ...
% kron( eye(n^4), B(:,i).' ) );
% GG = C4*S4*GG;
% res(:,i) = -GG*v5;
% end
% kk4 = R\res.';
% end
k4 = k{4};
v5 = v{5};
ka4 = ka(:,idx3 +1:idx4 );
py5 = py( idx4-idx1+1:idx5-idx1);
fprintf('NST: The norm of k^[4] is %g\n',norm(ka4));
fprintf('NST: The norm of v^[5] is %g\n',norm(py5));
e_k4 = norm( ka4 - k4*S4' );
fprintf('tensor: The relative error in k^[4] is %g\n',e_k4/norm(ka4));
e_p5 = norm( py5 - v5*S5' );
fprintf('tensor: The relative error in v^[5] is %g\n\n',e_p5/norm(py5));
if ( exist('testFull','var') && testFull )
kF4 = kF{4};
vF5 = vF{5};
% Convert to compact Taylor format for comparison with the NST toolbox
% solution.
e_k4 = norm( ka4 - kF4*S4' );
fprintf('FullKr: The relative error in k^[4] is %g\n',e_k4/norm(ka4));
e_p5 = norm( py5 - vF5*S5' );
fprintf('FullKr: The relative error in v^[5] is %g\n\n',e_p5/norm(py5));
end
end
if ( degree>4 )
tic;
S6 = Kron2CT(n,6);
CTtime = toc;
if ( verbose )
fprintf('CT to Kron mappings (6) require %g seconds\n',CTtime)
end
k5 = k{5};
v6 = v{6};
ka5 = ka(:,idx4 +1:idx5 );
py6 = py( idx5-idx1+1:idx6-idx1);
fprintf('NST: The norm of k^[5] is %g\n',norm(ka5));
fprintf('NST: The norm of v^[6] is %g\n',norm(py6));
e_k5 = norm( ka5 - k5*S5' );
fprintf('tensor: The relative error in k^[5] is %g\n',e_k5/norm(ka5));
e_p6 = norm( py6 - v6*S6' );
fprintf('tensor: The relative error in v^[6] is %g\n\n',e_p6/norm(py6));
end
if ( degree>5 )
tic;
S7 = Kron2CT(n,7);
CTtime = toc;
if ( verbose )
fprintf('CT to Kron mappings (7) require %g seconds\n',CTtime)
end
k6 = k{6};
v7 = v{7};
ka6 = ka(:,idx5 +1:idx6 );
py7 = py( idx6-idx1+1:idx7-idx1);
fprintf('NST: The norm of k^[6] is %g\n',norm(ka6));
fprintf('NST: The norm of v^[7] is %g\n',norm(py7));
e_k6 = norm( ka6 - k6*S6' );
fprintf('tensor: The relative error in k^[6] is %g\n',e_k6/norm(ka6));
e_p7 = norm( py7 - v7*S7' );
fprintf('tensor: The relative error in v^[7] is %g\n\n',e_p7/norm(py7));
end
if ( degree>6 )
k7 = k{7};
ka7 = ka(:,idx6 +1:idx7 );
fprintf('NST: The norm of k^[7] is %g\n',norm(ka7));
e_k7 = norm( ka7 - k7*S7' );
fprintf('tensor: The relative error in k^[7] is %g\n\n',e_k7/norm(ka7));
end
% sometimes these errors are high, but the relative error is then low.
% possibly due to factors like nearly singular R, nearly uncontrollable
% (or extensions of this notion to the higher degree case?)
% other times, we are computing a relative error for a quantity
% that should be zero.