Skip to content

Latest commit

 

History

History
710 lines (491 loc) · 28 KB

README.md

File metadata and controls

710 lines (491 loc) · 28 KB

jsonapi-vuex

Build Status npm bundle size Language grade: JavaScript

A module to access JSONAPI data from an API, using a Vuex store, restructured to make life easier.

Documentation

Documentation, including JSDoc-generated API reference, is available at: JSONAPI-Vuex Documentation

Contents

Restructured Data

Attributes

JSONAPI is an extremely useful format for clearly interacting with an API - however it is less useful for the end developer, who is generally more interested in the data contained in a record than the structure surrounding it.

In this module we 'reverse' the JSONAPI data into a form where data attributes become top-level keys, and JSONAPI-specific data is moved down under another key: _jv.

For example, the JSONAPI record:

{
  "id": "1",
  "type": "widget",
  "attributes": {
    "name": "sprocket",
    "color": "black"
  },
  "meta": {}
}

This would be accessed as record.attributes.color

This module would restructure this record to be:

{
  "name": "sprocket",
  "color": "black",
  "_jv": {
    "id": "1",
    "type": "widget",
    "meta": {}
  }
}

This would now be accessed as record.color

In cases where there are multiple records being returned in an object, the id is used as the key (though this is ignored in the code, and the 'real' id is always read from _jv):

{
  "1": {
    "name": "sprocket",
    "color": "black"
  },
  "2": {
    "name": "cog",
    "color": "red"
  }
}

These are accessed as record.1.name or record.2.color, or if a list is needed, via Object.values(record).

The above structure is actually how records are maintained in the store, nested below the endpoint:

{
  "widget": {
    "1": {...},
    "2": {...}
  },
  "doohickey": {
    "20": {...}
  }
}

Relationships

Relationships in JSONAPI are structured as either a data key containing one or more resource identifier objects under the relationship name, (or links which point to the related object in the API). For data entries, these are added to the 'root' of the object, where the key is the relationship name, and the value is a javascript getter that calls the get vuex getter for that record. This allows related data to be handled as if it was an attribute. (The object is structured using the same 'id-as-key' system for multiple entries as for records as described above).

The value returned by the getter will therefore be the value of the related object (if in the store), or an empty object (if not). Updating the store will cause the retuern value to update automatically.

{
  "id": "1",
  "type": "widget",
  "attributes": {
    "name": "sprocket"
  },
  "relationships": {
    "doohickeys": {
      "data": [
        {
          "type": "doohickey",
          "id": "20"
        }
      ]
    }
  }
}

This becomes:

{
  "name": "sprocket",
  "doohickeys": {
    "20": » get('doohickey/20')  // getter call
    }
  }
  "_jv": {
    "id": "1",
    "type": "widget",
    "relationships": {...}
  }
}

The attributes of the related object can then be accessed as e.g.: record.doohickeys.20.size

Getting Started

Having created a Vue project, simply add the module to your store.js, passing it an axios-like instance:

import Vue from 'vue'
import Vuex from 'vuex'
import axios from 'axios'
import { jsonapiModule } from 'jsonapi-vuex'

Vue.use(Vuex)

const api = axios.create({
  baseURL: 'https://api.example.com/1/api/',
  headers: {
    'Content-Type': 'application/vnd.api+json',
  },
})

export default new Vuex.Store({
  modules: {
    jv: jsonapiModule(api),
  },
})

Usage

Features

There are a number of features which are worth explaining in more detail. Many of these can be configured - see the Configuration section.

  • Includes - If the JSONAPI record contains an includes section, the data in this will be added to the store alongisde the 'main' records. (If includes are not used, then you will need to use getRelated to fetch relationships).

  • Follow relationships - Relationships specified as data resources in the JSONAPI data will be added alongside the attributes in the restructured data 'root' as a get getter property. Querying this key will return the record from the store, if present. Additionally, helper methods will be added to _jv to make dealing with these easier (see Helper functions)

  • Recursive Relationships - Relationships can be recursive - e.g. author => article => blog => author. This can cause infinite recursion problems with anything walking the object (such as JSON.stringify). By default, recursion is detected and stopped when following relationships, with the recursive relationship replaced with a (restructured) resource identifier.

  • Preserve JSON - The original JSONAPI record(s) can optionally be preserved in _jv if needed - for example if you need access to meta or other sections. To avoid duplication, the data section (attributes, relationships etc) is removed.

  • Clean Patches - by default, data passed to the patch action is used as-is. If cleanPatch is enabled, then the patch object is compared to the record in the store (if it exists), and any attributes with identical values are removed. This means that the final patch will only contain new or modified attributes, which is safer and more efficient, as it avoids sending unnecessary or 'stale' data. Additionally, unwanted properties in _jv (links, meta, relationships) can be removed.

  • Merging - By default, data returned from the API overwrites records already in the store. However, this may lead to inconsistencies if using Sparse fieldsets or otherwise obtaining only a subset of data from the API. If merging is enabled, then new data will be merged onto existing data. this does however mean that you are responsible for explicitly calling the deleteRecord mutation in cases where attributes ahve been removed in the API, as they will never be removed from the store, only added to.

  • Clear on update - If enabled, then each new set of records is considered to be definitive for that type, and any other records of that type in the store will be removed. This option is useful for cases where you expect the API response to contain the full set of records from the server, as it avoids the need for manual cache expiry. The code will first apply the new records to the store, and then for each type which has had new records added, remove old ones. This is designed to be more efficient in terms of updating computed properties and UI redraws than emptying then repopulating the store. (see [Configuration])

  • Endpoints - by default this module assumes that object types and API endpoints (item and collection) all share the same name. however, some APIs use plurals or other variations on the endpoint names. You can override the endpoint name via the axios url config option or the links.self attribute (see Endpoints)

  • JSONPath - the get getter takes a second (optional) argument which is a JSONPath. This is used to filter the results being returned from the store. (see get)

  • Searching - The API can be searched without any changes being propagated to the store. This is useful for AJAX-style queries. (see search)

Vuex Methods

The 3 categories of Vuex methods are used as follows:

  • Actions - These are used to query and modify the API, returning the results. Actions are asynchronous.

  • Getters - These are used to directly query the store without contacting the API. Getters are synchronous.

  • Mutations - These are used to change the state of the store without contacting the API. (They are usually called by Actions, but can be used directly). Mutations are synchronous.

Actions

Actions API Reference

The usual way to use this module is to use actions wherever possible. All actions are asynchronous, and both query the API and update the store, then return data in a normalized form. Every action call's state is tracked as it progresses, and this status can be easily queried (see the status getter).

There are 4 actions (with aliases): get (fetch), post (create), patch (update), and delete which correspond to RESTful methods. There is also a getRelated action which fetches a record's relationships.

RESTful actions

Actions are dispatched via this.$store.dispatch. As this project is used as a module, the first parameter to dispatch is of the form module/action, e.g. jv/get. The second parameter to dispatch is passed on to the action.

Actions take 2 arguments:

The first argument is an object containing restructured data. Actions which take no data argument apart from the record (get and delete) can also accept a URL to fetch, relative to the value of axios baseURL (if set). The leading slash is optional. This means you don't need to create an 'empty' restructured data object to get or delete a record.

The second argument is an (optional) axios config object. This is used to configure axios, most commonly used for adding like headers, URL parameters etc.

Note - The way Vuex is designed, dispatch can only accept 2 parameters. If passing 2 arguments to the action (i.e adding axios config), the arguments must be passed in an array.

Note - The return value of the get action differs in that it returns the results of the action, rather than querying the store for the requested item/collection. This is because the get may be a partial or filtered request, returning only a subset of the item/collection. This means that if you use these results, later updates to the stores will not be reflected. If you want to query the store, then use the get getter once the action has returned.

Some examples:

// To get all items in a collection, using a string path:
this.$store.dispatch('jv/get', 'widget').then((data) => {
  console.log(data)
})

// Request Query params (JSONAPI options, auth tokens etc)
const params = {
  token: 'abcdef123456',
}

// Get a specific record from the 'widget' endpoint, passing parameters to axios:
this.$store
  .dispatch('jv/get', ['widget/1', { params: params }])
  .then((data) => {
    console.log(data)
  })

// Restructured representation of a record
const newWidget = {
  name: 'sprocket',
  color: 'black',
  _jv: {
    type: 'widget',
  },
}

// Create a new widget in the API, using a restructured object, and passing parameters to axios:
this.$store
  .dispatch('jv/post', [newWidget, { params: params }])
  .then((data) => {
    console.log(data)
  })

// Update a widget in the API
const widgetColor = {
  widget: {
    1: {
      color: 'red',
    },
  },
}

this.$store.dispatch('jv/patch', [widgetColor, { params: params }])

// Fetch, then update a widget in the API
this.$store
  .dispatch('jv/get', ['widget/1', { params: params }])
  .then((widget1) => {
    widget1['color'] = 'red'
    this.$store.dispatch('jv/patch', [widget1, { params: params }])
  })

search

The search action is the same as the get action, except that it does not result in any updates to the store. This action exists for efficiency purposes - for example to do 'search-as-you-type' AJAX-style queries without continually updating the store with all the results.

const widgetSearch = (text) => {
  const params = { 'filter[text_contains]': text }

  this.$store
    .dispatch('jv/search', 'widget', { params: params })
    .then((data) => {
      return data
    })
}

getRelated

Note - in many cases you may prefer to use the jsonapi server-side include option to get data on relationships included in your original query. (See Relationships).

Like the RESTful actions, this takes 2 arguments - the string or object to be acted on, and an axios config object. It returns a deeply nested restructured tree - relationship -> type -> id -> data.

Note - getRelated only works on specific items, not collections.

By default this action will fetch the record specified from the API, then work out it's relationships and also fetch those.

If the argument is a string, it can optionally take a 3rd argument, e.g. type/id/relationship to cause only the named relationship to be followed.

If the argument is an object, then if the object contains a _jv/relationships section, then only these relationships will are followed. If the relationships section contains keys (i.e relationship names) but no values (i.e. resource linkage) then these will be fetched from the API.

// Assuming the API holds the following data
jsonapi = {
  data: {
    type: 'widget',
    id: '1',
  },
  relationships: {
    widgets: {
      data: {
        type: 'widget',
        id: '2',
      },
    },
    doohickeys: {
      data: {
        type: 'doohickey',
        id: '10',
      },
    },
  },
}

// Get all of widget 1's related items (widgets and doohickeys)
this.$store.dispatch('jv/getRelated', 'widget/1').then((data) => {
  console.log(data)
})

// Get only the items in the 'widgets' relationship
this.$store.dispatch('jv/getRelated', 'widget/1/widgets').then((data) => {
  console.log(data)
})

// Equivalent, using object instead of string argument
const customRels = {
  _jv: {
    type: 'widget',
    id: '1',
    relationships: {
      widgets: {
        data: {
          type: 'widget',
          id: '2',
        },
      },
    },
  },
}

// Equivalent, but 'doohickeys' resource linkage will be fetched from the server
// i.e. { data: { type: 'doohickey', id: '10' }}
const customRelsNoData = {
  _jv: {
    type: 'widget',
    id: '1',
    relationships: {
      doohickeys: undefined,
    },
  },
}

this.$store.dispatch('jv/getRelated', customRels).then((data) => {
  console.log(data)
})

Getters

Getters API Reference

There are 3 getters available. get, getRelated and status.

get

Get returns information directly from the store for previously cached records. This is useful for performance reasons, or for use in computed properties.

Get returns an object with getters that point to the data in the store. This means that updates to the store will be dynamically reflected in the results object. However it also means that it is not possible to modify this object as getters aren't writeable.

If you wish to modify the results object (e.g. for patching) then you should use the utils.deepCopy method on the object to make a copy that is safe to modify. This deep copies the object, while preserving the Helper Functions.

computed: {
  ...mapGetters({
    // Map 'jv/get' as a computed property 'get'
    get: 'jv/get',
  }),
  // Create a computed property that calls the getter with normalized data
  getWidget: function() {
    return this.$store.getters['jv/get']({ _jv: { type: 'Widget' } })
  },
},

Like actions, get takes an object or string indicating the desired resources. This can be an empty string, type, or type and id, to return the whole store, a collection, or an item.

get takes an optional 2nd argument - a jsonpath string to filter the record(s) which are being retrieved. See the project page for JSONPath Syntax

// Assuming the store is as follows:
store = {
  widget: {
    '1': {
      name: 'sprocket',
      color: 'black',
    },
    '2': {
      name: 'cog',
      color: 'red',
    },
  },
}

// Get all records (of any type) with id = 10 (useful if your API has globally unique UUIDs)
this.$store.getters['jv/get']('', '$.*.10')

// Get all widgets that are red:
this.$store.getters['jv/get']('widget', '$[?(@.color=="red")]')

// Note that filters can create impossible conditions
// The following will return empty, as widget 1 is not red
this.$store.getters['jv/get']('widget/1', '$[?(@.color=="red")]')

getRelated

getRelated returns the relations of the specified resource. The resource is specified by either a string, or by a normalized resource object (as in jv/get). The getter returns an object with each of the resource's relationships as a key. The resources inside the objects relationshipsJSON-API key are mapped to a jv/get getter. This means that the resources can be retrieved from the result of getRelated once they are loaded into the store (with the getRelated action). If the resources are not loaded into the store yet, only the keys of the related resources will be returned.

For example, to get all widgets related to the widget with id 1:

this.$store.getters['jv/getRelated']('widget/1')['widgets']

status

Every action is given a unique id, and this is both returned as a property of the promise, and preserved in state under the jvtag (as defined in config).

The status getter accepts either an id, or a promise returned by an action, and returns the stored state of the action. This can be one of:

  • LOADING
  • SUCCESS
  • ERROR

For example, to determine the state of an action:

// Get a promise from calling an action
let action = this.$store.dispatch('jv/get', 'widget')

// Check the status of the action (and assuming it hasn't yet completed)
let status = this.$store.getters['jv/status'](action)

console.log(status) // LOADING

// Continue to handle the action results in the usual way
action.then((data) => {
  // The action has returned
  console.log(status) // SUCCESS

  // Continue as usual
  console.log(data)
})

The status getter is primarily designed to use useful for handling UI changes based on actions.

For example, you might want to disable an attribute while an action is happening by 'watching' status:

<input type="text" :disabled="status === 'LOADING'">

Mutations

Mutations API Reference

There are several mutations which can be used to directly modify the store.

Note - in most cases mutations are called from actions as a result of querying the API, and it is not necessary to call mutations directly.

Mutations take normalised data as an argument.

deleteRecord

Deletes a single record from the store.

store.commit('jv/deleteRecord', { _jv: { type: 'widget', id: '1' } })

addRecords

Updates records in the store. Replaces or merges with existing records, depending on the value of the mergeRecords configuration option.

replaceRecords

As addRecords, but explicitly replaces existing records.

mergeRecords

As addRecords, but explicitly merges onto existing records.

clearRecords

Will remove all records from the store (of a given type) which aren't contained in given response. (See clearOnUpdate).

setStatus

Sets the session status information in the store.

deleteStatus

Deletes a session status record from the store.

Helper Functions

Distinguishing between the attributes and relationships in the 'root' is simplified by a number of 'helper' functions which are provided in the _jv (jvtag) object:

  • attrs - a getter property which returns an object containing all attributes.

  • rels - a getter property which returns an object containing all relationships.

  • isAttr - a function which returns True/False for a given name.

  • isRel - a function which returns True/False for a given name.

These are particularly useful in Vue templates. For example to iterate over an item, picking out just the attributes:

<li v-for="(val, key) in widget._jv.attrs">{{ key }} {{ val }}</li>

<!-- Or -->

<li v-for="(val, key) in widget" v-if="widget._jv.isAttr(key)">{{ key }} {{ val }}</li>

Utility Functions

Utility Functions API Reference

Some functions are potentially useful for data manipulation etc outside the normal code flow. These functions are exported as utils, i.e:

import { utils } from `jsonapi-vuex`

The current utility functions are:

addJvHelpers

Adds the 'helper' functions/properties to _jv in a restructured object.

addJvHelpers takes a restructured object as it's argument, and returns (and modifies in-place) the obejct to include the helper methods (see Helper functions)

cleanPatch

If you wish to clean patches on a per-patch basis, then set the cleanPatch configuration option to false, and instead use this method on your patch record prior to passing it to the action.

cleanPatch takes 3 arguments - the patch data, the state to be compared to, and an array of _jv properties to be preserved (see cleanPatchProps config option).

deepCopy

Makes a deep copy of a normalised object, and adds/updates the Helper functions. This is done because walking the object will normally cause the helper functions to be called, resulting in static (and out-of-date) results.

This function is designed for situations where you wish to modify the results of a getter call, which will throw an error if any of it's data is modified.

Note - Be aware that this copy will be a 'static' version of the original object - if the store is subsequently updated, the copied object will no longer reflect this.

getTypeId

Returns an array containing the type, id and rels for a given restructured object (if defined).

getUrl

Returns the self.links url, or constructs a path from the type and id.

getUrl takes 2 arguments, the restructured object, and optionall post (defaults to false). If post is true, then the constructed path will not contain an id.

jsonapiToNorm

Convert a JSONAPI object to a restructured object.

normtoJsonapi

Convert a restructured object to a JSONAPI object.

normToStore

Convert a restructured object to it's store form.

Configuration

Configuration API Reference

A config object can be passed to jsonapiModule when instantiating. It will override the default options:

const config = { jvtag: '_splat' }
jm = jsonapiModule(api, config)

Config Options

For many of these options, more information is provided in the Usage section.

  • jvtag - The tag in restructured objects to hold object metadata (defaults to _jv)
  • followRelationshipsData - Whether to follow and expand relationships and store them alongside attributes in the item 'root' (defaults to true).
  • preserveJson - Whether actions should return the API response json (minus data) in _jv/json (for access to meta etc) (defaults to false)
  • actionStatusCleanAge - What age must action status records be before they are removed (defaults to 600 seconds). Set to 0 to disable.
  • mergeRecords - Whether new records should be merged onto existing records in the store, or just replace them (defaults to false).
  • clearOnUpdate - Whether the store should clear old records and only keep new records when updating. Applies to the type(s) associated with the new records. (defaults to false).
  • cleanPatch - If enabled, patch object is compared to the record in the store, and only unique or modified attributes are kept in the patch. (defaults to false).
  • cleanPatchProps - If cleanPatch is enabled, an array of _jv properties that should be preserved - links, meta, and/or relationships. (defaults to []).
  • recurseRelationships - If false, replaces recursive relationships with a normalised resource identifier (i.e { _jv: { type: 'x', id: 'y' } }). (defaults to false).

Endpoints

By default jsonapi-vuex assumes that object type and API endpoint are the same. For example, type: person would have endpoint URLs of /person and /person/1 for collections and single items.

When performing request on an already known single item (like an update), jsonapi-vuex will use the links.self attribute of an item to determine the API endpoint, if it is present.

However many APIs vary how endpoints are named - for example plurals (e.g. type:person, /person/1 and /people), or cases where the endpoint doesn't match the type (e.g. type: person /author and /author/1) or even a combination (e.g. type: person /author/1 and /authors)

To solve this it is possible to override the endpoint for a request by explicitly setting the axios url configuration option:

data = { _jv: { type: 'person' } }

// Default behaviour - will always treat type = itemEP = collectionEP
this.$store.dispatch('jv/get', data)
// GETs /person

// Explicitly override the endpoint url
this.$store.dispatch('jv/get', [data, { url: '/people' }])

this.$store.dispatch('jv/get', [data, { url: '/author/1' }])

// Override using a dynamic function
const customUrl = (data) => {
  if (data.hasOwnProperty('id')) {
    // single item (singular)
    return `person/${data.id}`
  } else {
    // collection (plural)
    return '/people'
  }
}

this.$store.dispatch('jv/get', [{ _jv: { type: 'widget' } }, { url: customUrl(data) }])

Note - If provided the url option is used as-is - you are responsible for setting a valid collection or item url (with id) as appropriate.

Development

Any bugs, enhancements or questions welcome as Issues (or even PRs!)

Development is currently being done with yarn - NPM should work, but if you hit unexpected issues, please try yarn before filing a bug.

Setup

Having cloned this repository, simply run:

yarn

This should pull in all dependencies and development dependencies.

Testing

There are several scripts set up in package.json:

yarn unit - Run the unit tests (uses karma, mocha, chai, sinon)

yarn e2e - Run the e2e tests (uses nightwatch)

yarn testapp - Runs the example testapp used in e2e testing to allow interactive testing/debugging in a browser.

yarn fakeapiserver - Runs a fake JSONAPI server used by the testapp for interactive testing/debugging.

yarn test - Runs both unit and e2e tests. (Used by travis).

Note - All code is pre-processed with babel and eslint when testing for backwards compatability and linting.

Coding Standards

Please follow these guidelines when writing and submitting code:

  • eslint - This is run over both the main code and the test suite during tests. See .eslint.rc.js for changes to the default rules.

  • >= ES6 - Please try to use ES6 and newer methods (matching the policy that Vue has).

  • Tests - This project aspires to test-driven development. Please submit unit tests (and ideally e2e tests) with all PRs (unless there's a good reason not to).

  • Versioning - Semantic versioning should be used, see https://semver.org for details.

  • Continuous Integration - The project uses [travis(https://travis-ci.com) to run tests against all submissions - PRs that are not passing will not be accepted (without good reason).

  • Specific Commits - Please make all commits/PRs as atomic and specific as possible.